LFP 배터리의 OCV 고도화에 따른 확장 칼만 필터 기반 충전 상태 추정

송민우*, 강은진*, 김민혁*, 김종훈* 충남대학교 에너지저장변환연구실*

Extended Kalman Filter-Based State of Charge Estimation with Enhanced Open Circuit Voltage of LFP Battery

Minwoo Song^{*}, Eunjin Kang^{*}, Minhyeok Kim^{*}, Jonghoon Kim^{*} Energy Storage Conversion Lab., Chungnam National University^{*}

ABSTRACT

리튬 이온 배터리의 고유한 특성인 개방 회로 전압 (Open-circuit voltage; OCV)은 배터리 충전 상태(State of charge; SOC)에 대한 함수로, SOC 추정에 있어 중요한 역할 을 한다. 그러나 리튬 인산철(Lithium-iron-phosphate; LFP) 배터리의 경우 NMC(Nickel-manganese-cobalt) 배터리에 비해 SOC에 대한 OCV의 변화량이 적어 정확한 SOC 추정에 한계 가 있다. 따라서 본 논문은 재귀 최소 자승법(Recursive least square; RLS)을 통해 추정된 기존 단자전압을 기반으로 가중 치를 선정하여 고도화된 OCV를 도출한다.

1. 서론

최근 몇 년간 화석연료 사용의 증가로 인해 지구 온난화가 가속화되고 있다. 이와 같은 환경 문제에 대한 인식이 높아지 면서 전 세계적으로 지속 가능한 에너지 사용과 친환경 기술에 대한 관심이 증가하고 있다. 그중 하나가 바로 전기 자동차 (Electric vehicles; EVs)의 증가이다. 전기 자동차에는 효율적 인 에너지 출력을 위해 높은 에너지 밀도를 가진 리튬이온 배 터리가 주로 사용된다. 하지만 주로 사용되는 NMC (Nickel-manganese-cobalt) 배터리의 경우 니켈과 코발트의 가 격이 높으며 양극재의 화학적 구조가 불안정하여 안전성이 낮 다. 따라서 이를 대체하고자 전고체 배터리, 나트륨 배터리 등 다양한 소재의 배터리의 개발이 진행 중이다. 그중 리튬 인산 철(Lithium-iron-phosphate; LFP) 배터리는 NMC 배터리 대비 가격이 낮고 양극재의 화학적 구조가 안정적이어서 화재와 폭 발 위험성이 적다. 따라서 최근 LFP 배터리가 주목받고 있으 며, 배터리의 안전성을 위해 정확한 SOC 추정은 필수적이다. 정확한 SOC 추정을 위해서는 모델의 정확도가 중요하기 때문 에 개방 회로 전압(Open-circuit voltage; OCV)의 중요성이 높 다. SOC 구간에 따른 OCV를 도출하기 위하여 IO(Incremental OCV; IO) 실험을 진행한다. 하지만 LFP 배터리는 SOC 20% ~80% 구간에서 OCV의 변화량이 적어 SOC 추정에 있어 오 차가 발생한다. 또한 저온에서 IO 실험을 진행하는 경우 내부 저항으로 인하여 가용 용량을 전부 사용하지 못하는 한계점이 발생한다. 이러한 단점을 보완하고자 미소 전류(Low current; LO) 실험을 통해 OCV를 도출한다. LO 실험은 미소 전류를 인가하여 큰 전류 대비 내부 저항의 영향성을 최소화할 수 있 다. 도출된 OCV는 IO 실험에 비해 OCV 변화량이 크지만, 전 류 인가에 따른 내부 저항 영향성으로 인해 정확한 OCV 도출 이 불가능하다. 또한 LO 실험만으로는 배터리의 전기적 등가 회로 모델(Electrical equivalent circuit model; EECM) 파라미 터의 도출이 불가능하다. 따라서 본 논문은 IO와 LO의 단점을 보완하고자, 두 실험에서 도출된 OCV를 사용하여 고도화를 진 행한다. 각 OCV를 기반으로 EECM에서 도출한 단자전압을 통 해 가중치를 선정한다. 선정된 가중치를 기존 OCV에 부여하여 고도화된 OCV를 도출한다. 최종적으로 확장 칼만 필터 (Extended Kalman filter; EKF)를 기반으로 단자전압 및 SOC 추정 결과를 기존 OCV와 비교한다^[1].

2. OCV 고도화 및 확장 칼만 필터 기반 SOC 추정

2.1 배터리 전기적 특성 실험

본 논문에서는 LFP 배터리의 OCV 도출을 위해 IO 실험과 LO 실험을 진행하였다. IO 실험은 0.33C-rate, SOC 2% 간격 으로 정전류 방전을 진행하여 방전 OCV를 도출하였다. LO 실 험은 배터리 내부 저항의 영향성을 최소화하기 위하여 0.05C-rate로 정전류 충·방전을 진행한 후 SOC 2% 간격으로 선형 보간을 통해 방전 및 평균 OCV를 도출한다.

2.2 가중치 선정을 통한 OCV 고도화

정확한 SOC 추정을 위해 기존 OCV의 단점을 보완하고자 전기적 특성 실험을 통해 도출한 3개의 OCV를 모두 반영한다. 각각의 OCV는 서로 다른 단자전압 추정 결과를 도출하며, 추 정된 단자전압을 기반으로 가중치를 선정한다. 가중치 선정 방 식으로 오차 기반, 최대-최소 정규화 그리고 Zscore 정규화 방 식을 사용한다. 3가지 방식 모두 작은 값에 가중치를 크게 부 여하기 위하여 도출된 값에 역수를 취한다. 이를 가중 평균 방 식을 통해 고도화된 OCV를 도출하는 방식은 식 (1)으로 나타 낸다.

$$OCV_{Advancement} = \frac{W_1 OCV_1 + W_2 OCV_2 + W_3 OCV_3}{W_1 + W_2 + W_3}$$
(1)

OCV₁, OCV₂, OCV₃은 각각 평균 LO, 방전 LO, 방전 IO를 나타내며, W₁, W₂, W₃은 그에 대응하는 가중치를 나타낸다.

OCV_{Advancement}는 고도화된 OCV를 나타낸다.

오차를 기반으로 가중치를 선정하는 방식은 가장 보편적인 방식으로, 단자전압 차이를 측정 전압으로 나누어 구한 오차를 통해 가중치를 선정한다. 단자전압 오차를 구하는 방식은 식 (2)에 나타낸다.

최대-최소 정규화 방식은 입력된 데이터의 최솟값과 최댓값 을 이용하여 0과 1 사이의 값으로 정규화하는 방식이다. 따라 서 각 OCV의 단자전압 차이의 최댓값과 최솟값을 결정한 후 식 (3)을 통해 정규화 및 가중치 선정을 진행한다.

Zscore 정규화 방식은 평균을 기준으로 얼마나 떨어져 있는 지를 나타내는 방식이다. 기존 OCV의 단자전압 추정값과 3개 의 단자전압 평균의 차이를 구한 후 표준편차 0로 나누어 Zscore를 구한다. Zscore를 통해 가중치를 구하는 방법은 식 (4)에 나타낸다.

선정된 가중치를 통해 식 (1)을 사용하여 고도화된 OCV를 도출하고, 이를 재귀 최소 자승법(Recursive least square; RLS) 알고리즘에 적용하여 등가회로 모델의 파라미터를 계산 한다. RLS에서 실시간으로 도출되는 파라미터를 기반으로 EKF를 통해 SOC를 추정한다. 전체적인 흐름도는 그림 1에 나 타낸다.

$$W_{Error} = \left| \frac{V_{Measurement} - V_{Estimation}}{V_{Measurement}} \right|^{-1}$$
(2)

$$W_{MinMax} = \left(\frac{|V_{Difference}| - |V_{Difference,Min}|}{|V_{Difference,Max}| - |V_{Difference,Min}|}\right)^{-1}$$
(3)

$$W_{Zscore} = \left(\frac{|V_{Measurement} - V_{Average}|}{\sigma}\right)^{-1} \tag{4}$$

 OCV1
 OCV2
 OCV3

 RLS
 RLS
 RLS

그림 1 RLS 및 EKF 흐름도

Fig. 1 Flowchart of RLS and EKF algorithm

2.3 단자전압 및 SOC 추정 결과 비교

설계된 모델 검증을 위해 주행 프로파일을 반복 수행한 데 이터를 사용하여 기존 OCV와 고도화된 OCV의 단자전압과 SOC 추정 오차를 비교한다. 그 결과, 기존 OCV에 비해 고도 화된 OCV의 최대 오차가 작으며, 그 중 최대-최소 방식이 최 대 단자전압 오차는 4.24%, SOC 추정 오차는 0.48%로 가장 좋은 성능을 보인다. 그림 1은 고도화된 OCV를 기반으로 단자 전압과 SOC 추정 결과 및 오차를 나타내며 표 1은 각 오차의 최댓값을 나타낸다.

그림 2 OCV 별 단자전압 및 SOC 추정 결과 비교: (a) 단자전압 비교; (b) 단자전압 오차 비교; (c) SOC 비교; (d) SOC 오차 비교 Fig. 2 Comparison of SOC estimation results by OCV: (a) comparison of terminal voltage; (b) comparison of terminal voltage error; (c) comparison of SOC; (d) comparison of SOC error

표 1 RLS 및 EKF 기반 단자전압, SOC 오차 Table 1 RLS and EKF based terminal voltage, SOC error

OCV	EECM voltage error	EKF SOC error
	Max	Max
LO average	5.35%	1.21%
LO discharge	4.31%	2.20%
IO discharge	8.64%	2.09%
Error	4.88%	0.52%
MinMax	4.24%	0.48%
Zscore	4.26%	1.16%

3. 결론

본 논문에서는 LFP 배터리의 정확한 단자전압 및 SOC 추 정을 위해 기존 OCV를 바탕으로 고도화를 진행한다. 고도화된 OCV를 통해 SOC 추정 성능을 확인한 결과 최대-최소 정규화 방식이 최대 오차가 0.48%로 가장 좋은 성능을 나타낸다.

본 논문은 한국전력연구원(R23X005-03, ESS향 물리모델 -AI 결합 클라우드 기반 BMS 요소기술 개발)과 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원 (No. 2022-1711152629, 대규모 분산 에너지 저장장치 인프 라의 안전한 자율운영 및 성능 평가를 위한 지능형 SW 프 레임 워크 개발)의 지원을 받아 수행되었음.

참 고 문 헌

 Charkhgard, Mohammad, and Mohammad Farrokhi. "State-of-charge estimation for lithium-ion batteries using neural networks and EKF." IEEE transactions on industrial electronics 57.12 (2010): 4178-4187.