가중치 적용 Savitzky-Golay 필터 기반 IC curve 도출을 통한 V2G 충방전 패턴에 따른 리튬이온 배터리 열화 메커니즘분석

공태현*, 이미영*, 김종훈* 충남대학교 에너지저장변환연구실*

Weighted Savitzky-Golay Filter-Based IC Curve Derivation for Analysis of Lithium-Ion Battery Degradation Mechanism According to V2G Charging and Discharging Patterns

Taehyeon Gong*, Miyoung Lee*, Jonghoon Kim* Energy Storage Conversion Lab., Chungnam National University*

ABSTRACT

본 논문은 V2G(Vehicle-to-Grid) 패턴에 따른 열화메커니즘 분석을 위하여 Gaussian Weighted Savitsky-Golay Filter(SGW) 기반 ICA(Incremental capacity analysis) 분석방법을 제안한다. 기존 SG 또한 열화 메커니즘을 정량적으로 분석을 진행하였고 각각의 리튬 손실(Loss of lithium inventory; LLI), 활물질 손실(Loss of active material; LAM)은 약 5%, 2% 발생하였고 V2G 충방전 패턴에 따라발생하는 주요 열화 메커니즘은 LAM인 것으로 확인하였다.

1. 서 론

친환경 에너지 발전으로의 변화와 이에 따른 전기 자동차를 이용한 전력 수급 및 저장하는 기술인 V2G(Vehicle-to-Grid) 기술의 중요성이 부각되고 있다. V2G에 따른 추가적인 충방전은 배터리의 성능에 영향을 미칠 수 있다. 따라서 본 논문은 V2G 충방전 패턴에 따른 배터리의 열화 메커니즘을 증분 용량 분석(Incremental capacity analysis; ICA) 기반으로 진행하였다. ICA는 전기적 신호를 바탕으로 전기화학적인 배터리 열화 메커니즘을 분석할 수 있다. 그러나 이 기법은 측정 과정에서 발생하는 노이즈에 취약한 단점이 존재한다. ICA를 활용하여 배터리의 열화 메커니즘을 정밀하게 분석하기 위해서는 정확한 측정이 필요하며, 이를 위해 필터 알고리즘 등의 처리가 필수적이다. 따라서 본 논문에서는 Gaussian Wegihted Savitzky-Golay Filter(SGW) 필터 알고리즘을 적용한 ICA 기법을 활용하여 V2G 충방전 패턴에 따른 배터리 열화를 분석하고, 이를 통해 V2G 패턴에 따른 열화 메커니즘을 분석 진행하였다.

2. V2G 패턴에 따른 배터리 열화 및 ICA 분석을 위한 전기적 특성 실험

2.1 V2G 충방전 패턴 설계

본 논문에서 실제 전기 자동차 사용자의 일주일간 주행패턴을 고려하여 그림 1과 같이 실험 프로파일을 설계했다. 평일 경우 UDDS(Urban dynmic drivings), 주말의 경우 HWFET(High way fuel economy test) 속도 프로파일로 설계하였다. C-rate 조절을 및 휴지 시간 제거를 통하여 가속 열화를 구현하였고 V2G 가혹 패턴의 경우 주 5회, V2G 일반패턴의 경우 주 2회 충방전으로 설계 하였다.

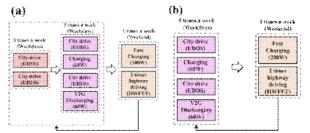


그림 1 (a) V2G 기혹 패턴 주행 프로파일, (b) V2G 일반 패턴 주행 프로파일 Fig. 1 (a) V2G Savage Pattern Driving Profile, (b) V2G Nomal Pattern Driving Profile

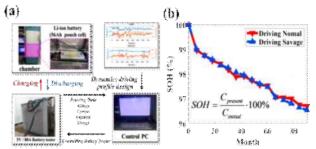


그림 2 (a) EV 주행 고려 V2G 패턴에 따른 전기적 특성 실험 구성, (b) V2G 패턴에 따른 SOH

Fig. 2 (a) Experimental Setup for EV Driving Considerations in V2G Patterns. (b) SOH according to V2G pattern

2.2 실험 구성 및 V2G 패턴에 따른 열화 메커니즘 분석을 위한 전기적 특성 실험

배터리는 C-rate/온도/방전 심도(Depth of discharge; DOD), SOC 등 여러 환경 조건에 따라 그 열화 메커니즘이 상이하다. 본 논문에서는 V2G 패턴에 따른 열화 메커니즘 분석을 위하여 그림 2(a)와 같이 항온 항습 챔버를 통한 상온(25℃), 충방전기, 이를 제어 및 데이터 수집을 위한 PC가 사용되었다. 실험 프로파일은 V2G 환경을 고려 실제 주행을 모사한 가속 열화 프로파일을 통하여 배터리 열화 실험을 진행하였고 각 사이클마다 Cell 성능 평가 시험(Reference performance test; RPT)을 진행하여 전기적 특성을 추출 및 평가하였으며 SOH는 그림 2(b)에 나타냈다. SOH는 가혹 패턴의 경우 96.6%, 일반 패턴의 경우 96.7%로 나타났다.

3. 가중치 적용 ICA 기반 V2G 충방전 패턴에 따른 열화 메커니즘 분석

3.1 Gaussian weighted Savitzky-Golav Filter(SGW) 기반 IC curve 도출

V2G 충방전 패턴에 따른 리튬이온 배터리의 열화 메커니즘 분석을 위하여 용량 실험의 방전 구간에서 식 (1)을 통하여 IC Curve를 도출하였다. ICA는 IC Curve를 통해 도출되는 각 Peak. Area 변화 분석을 통하여 열화 메커니즘을 분석하는 기법이다. 원본 IC 데이터는 과도한 노이즈를 포함하고 있기 때문에 필터링 기법인 Savbitzky-Golay(SG) 필터에 Gaussian Weight를 적용하여 노이즈 제거를 진행했다.[1] SG는 식 (2),(4) 로 도출되며 식 (5)에서 도출된 Gaussian Weight을 적용한 SGW는 식 (3),(4)를 통해 도출 했다. 그림 3과 같이 SGW는 SG 대비 발생하는 최대 오차를 0.09%에서 0.025%로 개선했다.

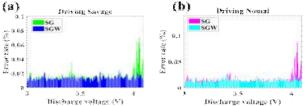


그림 3 (a) V2G 가혹패턴의 SG 및 SGW 필터 적용 ICA 오차 비교. (b) V2G 일반패턴의 SG 및 SGW 필터 적용 ICA 오차 비교

Fig. 3 (a) Comparison of ICA Errors with SG and SGW Filters in V2G Savage Patterns, (b) Comparison of ICA Errors with SG and SGW Filters in V2G Nomal Patterns

$$\frac{dQ}{dV} = \frac{\Delta Q}{\Delta t} \cdot \frac{\Delta t}{\Delta V} = I \cdot \frac{dt}{dV}$$
 (1)

$$\sum_{i=-m}^{m} (y_{i+j} - P(x_{i+j}))^2 \tag{2}$$

$$\sum_{j=-m}^{m} (y_{i+j} - P(x_{i+j}))^{2}$$

$$\sum_{j=-m}^{m} w_{i+j} (y_{i+j} - P(x_{i+j}))^{2}$$
(2)

$$\hat{y}_i = \sum_{j=0}^n \sum_{i=-m}^m c_j y_{i+j} \tag{4}$$

$$w_i = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(i-k)^2}{2\sigma^2}} \tag{5}$$

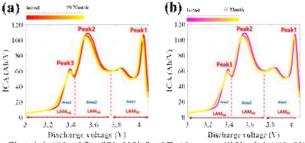


그림 4 (a) V2G 가혹 패턴 열화에 따른 IC curve 변화, (b) V2G 일반 패턴 열화에 따른 IC curve 변화

Fig. 4 (a) Changes in IC curve due to deterioration of V2G Savage pattern, (b) Changes in IC curve due to deterioration of V2G Nomal pattern

표 1 IC Peak 기반 열화 메커니즘 분석 방법 Table 1 Analysis of IC Peak-based degradation Mode

Degradation mode	ICA Peaks		
	1	2	3
LLI	↓	↓ / ←	←
LAM _{PE}	←	↓	↓
LAMNE			

$$G_{LAM} = \frac{\left| \max(\frac{dQ}{dV}) \right|_{1} - \left| \max(\frac{dQ}{dV}) \right|_{n}}{\left| \max(\frac{dQ}{dV}) \right|_{1}} \tag{6}$$

$$G_{LLI} = \frac{|\max(Q)|_{1} - |\max(Q)|_{n}}{|\max(Q)|_{1}} \tag{7}$$

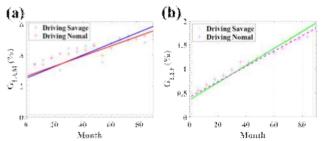


그림 5 (a) V2G 패턴에 따른 LAW 감소율, (b) V2G 패턴에 따른 LLI 감소율 Fig. 5 (a) LAM reduction rate according to V2G pattern, (b) LLI reduction rate according to V2G pattern

3.2 ICA 기반 V2G 패턴에 따른 열화 메커니즘 분석

SGW 기반 열화에 따른 IC curve는 그림 4와 같이 도출 진행하였다. 리튬이온 배터리의 열화 메커니즘은 표 1을 통하여 분석 진행하였다. V2G 가혹 및 일반 조건에서 모두 Peak 1은 아래로 감소하지만, 왼쪽으로 이동하는 것은 거의 볼 수 없다. 이를 통하여 Peak 1은 LLI, LAM_{NE} 의 감소가 발생했음을 알 수 있고, Peak 2.3의 왼쪽으로 이동 및 Peak의 감소를 통하여 LLI, LAM $_{
m PE}$, LAM $_{
m NE}$ 모두 발생했음을 알 수 있다. 또한 식 (6),(6)을 통하여 각 열화 메커니즘에 대한 정량적 분석을 진행했다.^[2] 그림 5와 같이 LLI, LAM은 가혹조건이 모두 컸으며 LAM은 0.29%, LLI는 0.1% 크게 나타났다. 또한 두 패턴 모두 LAM의 경우 5% 정도 발생하였고 LLI의 경우 2% 정도 발생한 것으로 보아 V2G 패턴에 따른 주요 열화 메커니즘은 LAM으로 나타난다.

4. 결 론

V2G 충방전 패턴에 따른 열화 메커니즘 분석 결과는 V2G 가혹 조건이 일반 조건에 비해 LAM은 0.29%, LLI은 0.1% 크게 나타났다. SOH가 94% 정도 진행되어 V2G 패턴에 따른 완전한 열화 메커니즘을 분석할 수 없었다. 하지만 두 패턴 모두 LAM이 지배적인 열화 메커니즘임을 확인 할 수 있었다. 향후 추가적인 실험을 통하여 배터리 열화를 진행하여 열화 메커니즘 분석을 진행할 예정이다.

본 논문은 산업기술평가관리원의 재원으로 인지컨트롤스(No. 20015572, 전기차 급속 충전 및 고출력 운전 대응을 위한 상변화 물질 적용 배터리 팩 열관리 기술 개발) 및 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원(No. 2022-1711152629, 대규모 분산 에너지 저장장치 인프라의 안전한 자율운영 및 성능 평가를 위한 지능형 SW 프레임 워크 개발)의 지원을 받아 수행되었음.

참 고 문 헌

- [1] Oxby, Paul W. "An Optimal Weighting Function for the Savitzky-Golay Filter." arXiv preprint arXiv:2111.11667 (2021).
- [2] Maures, Matthieu, et al. "Impact of temperature on calendar ageing of Lithium-ion battery using incremental capacity analysis." Microelectronics Reliability 100 (2019): 113364.