충전 커패시터 선정을 위한 CoolSiC[™] MOSFET IPM 부트스트랩 시뮬레이션

이태진, 한수혁 인피니언 테크놀로지스 코리아

Bootstrap simulation for CoolSiCTM MOSFET IPM to select charge capacitor value.

Tae Jin Lee, Soo Hyuk Han Infineon Technologies Korea Co.,LLC.

ABSTRACT

본 논문은 SiC MOSFET 인버터 Intelligent Power Module (IPM)의 부트스트랩 충전 커패시터에 대해서 고찰한다.

IPM에는 부트스트랩 다이오드와 저항이 내장되어 있기 때문에 애플리케이션에 맞는 커패시터를 적절히 선정해주어야 한다. 그러나 SiC MOSFET은 IGBT+FWD와 다르게 도통 특성에서 바디 다이오드와 턴 온 상태의 스위치 역방향이 존재하며, 두 방향의 경로에 따라 부트스트랩 충전 전압이 달라지게 된다. 따라서, 두 경우를 고려하여 커패시터 값을 선정하기에는 어려움이 존재한다. 본 논문에서는 인버터의 동작 조건 및 SiC MOSFET의 특성을 고려하여 충전 커패시터를 선정하기 위한 부트스트랩 시뮬레이션을 모델링을 하였으며, 실험과 비교를 통해 타당성을 입증한다.

1. 서 론

전 세계적으로 에너지 규제 및 전기차 보급화가 진행됨에 따라 전력용 반도체의 중요성이 한층 더 높아지고 있다. 이와 같은 전력용 반도체를 적절하게 구동하기 위해서는 게이트 드라이버 및 전원 설계가 필수적이다. 이와 관련하여 최적화된 솔루션들이 많이 제공되고 있으며, 제조사의 데이터 시트 또는 애플리케이션 노트를 통해 적절하게 사용할 수 있다. 본 논문에서는 인버터 IPM에 사용되는 부트스트랩 회로에 대해서 고찰하고자 한다. 이 회로는 극전압의 변화에 따라 전위가 변동되는 상단 스위치를 위한 드라이버에 전원을 공급한다. 출력 전류가 양(+)의 방향일 때 하단 스위치의 역방향인 다이오드로 충전 경로가 생성되고 음(-)의 방향일 때 하단의 스위치로 충전 경로가 생성되어 커패시터를 충전하게 된다. 그러나 애플리케이션의 동작 조건에 따라 충전 전압의 크기 및 변동 폭이 달라지기 때문에, 이를 고려하여 커패시터 값을 선정하는 것은 쉽지 않다. 특히 SiC MOSFET 인버터의 경우 전류가 양의 방향일 때 턴 온 상태의 스위치 역방향($V_{SD_{on}}$)과 바디 다이오드($V_{SD_{off}}$)가 존재하므로 두 상태를 모두 고려하여 커패시터 값을 선정하기에는 더욱 어려움이 많다.

본 논문에서는 이와 같은 문제를 해결하기 위해 Infineon Technologies사 CoolSiCTM MOSFET 인버터 IPM을 기반으로 PLECS 시뮬레이션 툴을 이용하여 부트스트랩 회로를 모델링하였다. 동작 조건에 따라 충전 전압을 분석하여 적절한 커패시터 값을 찾아보며, 실제 실험과 비교를 통해 시뮬레이션의 타당성을 입증한다. **2.1** 부트스트랩 회로

인버터에서 부트스트랩은 상단 스위치를 위한 드라이버에 전원을 공급하는 용도로 사용되며, 극전압이 GND와 같은 전위 일 때 충전 조건이 성립된다.

2. 본 론

그림1. CoolSiC[™] IPM의 부트스트랩 충전 모드. Fig.1 The bootstrap charge mode of CoolSiC[™] IPM.

그림 1은 IPM의 부트스트랩 충전 모드를 나타내며, U상을 기준으로 나가는 전류를 양(+)의 방향, 들어오는 전류를 음(-)의 방향이라고 정의한다.

양(+)의 전류 방향에서는 하단 스위치가 켜질 때 역방향으로 충전 경로가 정해지며, 음(-)의 방향 일 때 하단 스위치가 켜질 때 정방향으로 충전 경로가 정해진다. 이와 같은 동작과 부트스트랩 다이오드의 턴 온 전압 및 저항을 고려하면 drive IC 구동 전압(V_{DD})과 V_B의 전압 차가 약 1.0V 이상이면 충전 가능 조건이 성립한다. 이를 수식으로 표현하면 식(1)~(3)과 같이 나타낼 수 있으며, 식 (2), (3)은 전류 방향에 따른 수식이다. 식 (3)의 경우인 음(-)의 전류 방향에서는 스위치의 정방향 특성과 션트 저항의 전압 강하에 의해 V_{DD}에 뺄셈을 하게 된다. 이러한 이유로 음(-)의 전류 방향에서는 충전 구간이 거의 존재하지 않는다.

$$V_{DD} - V_B \ge 1.0V \tag{1}$$

 $V_{DD} + V_F(i) - 1.0V \ge V_{BS}, \qquad i_{as} > 0 \qquad (2)$

$$V_{DD} - V_{ce(sat)}(i) - V_{SH}(i) - 1.0V \ge V_{BS}, \quad i_{as} < 0$$
(3)

SiC MOSFET의 경우 양(+)의 전류 방향에서 역방향의 역할은 바디 다이오드(*V_{SDaff}*)와 턴 온 상태의 스위치 역방향(*V_{SDaff}*)이 존재한다. 대부분은 턴 온 상태의 스위치 역방향(V_{SDon})로 충전 경로가 정해지지만, 데드타임 구간 에는 바디 다이오드(V_{SDoff})를 통해 충전 경로가 생긴다. 따라서 두 경로의 도통 시간에 따라 충전 전압이 달라 질 수 있다.

2.2 CoolSiC[™] IPM 도통 특성

그림 2는 1200V CoolSiC[™] IPM의 도통 특성을 나타낸다. X축과 Y축의 값 0을 기준으로 제1사 분면의 실선은 턴 온 상태의 스위치 정방향(V_{DSon})의 도통 특성을 의미하고, 제3사 분면의 실선은 턴 온 상태의 스위치 역방향(V_{SDon}), 점선은 바디 다이오드 (V_{SDore})의 도통 특성을 의미한다.

그림2. 1200V CoolSiC[™] IPM의 도통 특성 Fig.2 The conduction characteristic of 1200V CoolSiC[™] IPM.

대부분의 충전은 양(+)의 전류 구간에서 발생하기 때문에 제3사 분면의 도통 특성들을 고려하면, 턴 온 상태의 스위치 역방향 (V_{SDon}) 은 정방향과 비슷한 특성을 보이지만, 바디 다이오드(V_{SDoff})는 높은 에너지 밴드갭으로 인해 높은 턴 온 전압이 요구된다. 따라서, 식 (2)를 바탕으로 바디 다이오드의 도통을 고려하면, 턴 온 상태의 스위치 역방향보다 높은 전압을 충전시킬 수 있다. 그러나 전력 손실 및 제어 주기 등과 같은 문제로 긴 시간동안 도통 시킬 수 없다. 이와 같은 특성 때문에 실제 애플리케이션에서 적절한 커패시터의 선정에 어려움이 있다.

3. 시뮬레이션 및 실험 결과

그림3. IPM 부트스트랩 회로 PLECS 시뮬레이션 모델링 Fig.3 The PLECS simulation modeling for IPM bootstrap circuit.

그림 3은 PLECS를 이용한 CoolSiCTM MOSFET 인버터 IPM의 부트스트랩 시뮬레이션 모델링이다. 애플리케이션 노트에는 충전 전압의 최소/최대값 차이는 약 1.0V 내외로 유지하고, 저전압 보호동작 그리고 손실 증가를 피하기 위해 적절한 최소 전압 보장을 권장하고 있다. 표 1의 동작 조건을 이 권장사항을 고려해서 적절한 커패시터 값을 찾으며 실험과 비교를 통해 시뮬레이션의 타당성을 입증한다.

표 1 시뮬레이션 및 실험 동작 조건

Table 1 Operation condition for simulation and experiment.

VDC	600 [V]	Output current	20 [Apk]
Switching frequency	20 [kHz]	MI / PF	0.75 / 0.89
Output frequency	100 [Hz]	VDD	18 [V]
PWM	SVPWM	Deadtime	0.5, 2 [us]

그림 4는 커패시터 값이 7*uF* 인 경우를 나타내며, 0.5us, 2us의 데드타임이 적용되었을 때 시뮬레이션 파형이다. 데드타임이 증가함에 따라 충전 전압이 증가하는 것을 확인할 수 있으며, 두 조건 모두 1V 내외의 리플을 충족함을 확인할 수 있다.

그림4. 충전 커패시터 값 및 데드타임에 따른 충전 부트스트랩 전압 Fig.4 Bootstrap voltage by the capacitor value and dead time variation.

커패시터의 산포, 온도 특성 및 충전 전류의 오차를 고려하여 약 3배의 값인 22*uF*을 선정할 수 있으며, 그림 4의 오른쪽 파형은 이에 대한 시뮬레이션 결과이며 그림 5는 실험 결과 파형이다. 두 결과를 비교했을 때 차이는 약 0.1V로써 이 시뮬레이션 모델링을 이용하여 충전 커패시터 값 선정에 타당하다고 할 수 있다.

그림5. 네트타임 번화에 따든 무르스트립 중전 전압 실험 결과 Fig.5 Experiment result according to the deadtime variation.

4. 결 론

본 논문은 PLECS를 이용하여 CoolSiCTM MOSFET 인버터 IPM의 부트스트랩의 시뮬레이션 모델링을 하였으며, 바디 다이오드 특성까지 고려함에 따라 실제 애플리케이션과 비슷한 환경을 구성했다. 이를 실험과 비교하여 타당성을 입증하였으며 제품의 특성 및 동작 조건을 고려해서 적절한 충전 커패시터를 선정할 수 있음을 확인했다.

참 고 문 헌

- J. W. Choi and S. K. Seol, "Inverter output voltage synthesis using novel dead time compensation." IEEE Trans. Power Electron, vol. 11, no.2. pp. 221–227, 1996, March.
- [2] AN2020-14 Bootstrap circuit design for the CIPOS[™] IPM series. Application Note, Infineon Technologies.
- [3] AN2020-41 CIPOS[™] Maxi IPM IM828 Series. Application Note, Infineon Technologies.