전압 증폭 방식을 이용한 LiFePO4 배터리 상태추정 정확도 향상 방법 연구

김범준, 김선웅, 조인호⁺ 국립한국교통대학교 전력변환시스템연구실

Research on Improving LiFePO₄ Battery State Estimation Accuracy Using Voltage Amplification Method

Beom-Jun Kim, Seon-Woong Kim and In-Ho Cho^{*} Korea National University of Transportation, Power Conversion System Lab.

ABSTRACT

LiFePO4(LFP) 배터리는 높은 사이클 특성, 가격경쟁력, 안정 성으로 인해 EV(Electric Vehicle)와 ESS(Energy Storage System) 시장에서 점차 높은 점유율을 형성하고 있다. 하지만 삼원계 배터리에 비해 전압 곡선의 기울기가 낮아서 상태추정 에 어려움이 있으며, 이는 전압을 센싱하는 BMS(Battery Management System) IC의 정밀도에 따라 더 큰 차이를 보인 다. 본 논문에서는 OP-Amp를 통해 LiFePO4 배터리의 센싱 전압을 증폭하는 회로를 제안한다. 실험 결과, 제안하는 회로를 적용하여 상태 추정을 진행하였을 때 기존 회로에 비해 정확도 가 향상되는 것을 확인할 수 있었다.

1. 서론

지구온난화의 가속화로 전 세계적으로 탄소배출 규제가 강 화됨에 따라 산업계에서는 화석연료 대신 재생에너지의 사용을 늘리고 있다. 재생에너지에의 효율적인 사용과 친환경 모빌리 티의 추진 동력을 공급하기 위해서는 에너지를 저장할 수 있는 이차전지가 필수적으로 필요한데, 리튬이온배터리(Lithium-ion battery; LIB)는 납축전지, 슈퍼커패시터 등 다른 2차전지에 비 해 높은 에너지밀도와 공칭전압을 가지고 있어 현재 산업계에 서 널리 사용되고 있다^[1]. LIB는 양극재의 구성 물질에 따라 배터리의 특성이 결정되는데, 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al) 중 세가지 원소를 사용하는 NCM, NCA 등의 삼 원계배터리의 경우 높은 에너지밀도와 출력 특성으로 초기 LIB 시장에서 높은 점유율을 형성하였다. 하지만 낮은 매장량 과 공급 불안정성의 이유로 최근에는 양극재로 LiFePO₄를 사 용하는 LFP 배터리의 점유율이 가파르게 상승하고 있다.

LFP 배터리의 양국재는 화학적으로 안정적인 '올리빈 구조' 로 이루어져 있기에 과충전 및 과방전으로 인한 화재 위험성이 낮고 전반적인 수명도 긴 편이다^[2]. 또한, 배터리의 핵심 소재 인 철(Fe)은 지구상의 가장 풍부한 소재이기에 삼원계 배터리 에 비해 가격이 저렴하다. 하지만, LFP 배터리의 경우 그림 1 과 같이 충전 상태 (State of Charge; SOC)에 따른 개방 회로 전압(Open Circuit voltage; OCV) 변화율이 삼원계 배터리에 비해 굉장히 낮기에 배터리의 상태를 추정하는 데에 어려움이 있다^[3]. 특히 SOC 20~90% 구간의 OCV/SOC 변화율은 5mV/%를 넘지 않는데, 이는 측정되는 전압 정보를 기반으로 SOC를 계산하는 BMS에서 큰 오차를 발생시킬 수 있다^[4]. 이에 본 논문에서는 전압 증폭 방식을 이용하여 LFP 배터 리 상태추정 정확도를 높이는 회로를 제안한다. 제안하는 회로 는 연산증폭기(OP-Amp)를 사용하여 BMS에 증폭된 배터리 전압을 센싱하도록 구성한다.

2. 제안하는 보조회로 구성

2.1 기존 BMS 회로 분석

상용 BMS의 경우 대부분 그림 2와 같은 연결 방식을 가지 고 있다. 각 배터리 셀은 BMS IC에 순서대로 연결되어 셀 전 압을 측정하게 된다. 대부분 0~5V 사이의 전압을 ADC 할 수 있으며 측정 정확도는 온도, 측정 시간, IC 분해능에 따라 달라 진다. 현재 상용 BMS IC들의 측정 오차는 수 mV 수준으로 낮아지는 추세이다. 하지만 LFP 배터리들의 경우, 서론에서 언 급했던 이유로 측정 오차가 배터리 상태추정에 미치는 영향이 상대적으로 클 수밖에 없다. 이에, 기존과 동일한 IC를 사용하 면서 정확도를 향상시킬 수 있는 방법 중 하나인 전압증폭방식 을 다음 절에서 제안한다.

그림 2 일반적인 BMS 연결 구성^[5]

Fig. 2 Conventional BMS connection configuration

2.2 제안 회로 구성

OP-Amp를 이용한 증폭 방식은 반전, 비반전, 차동 증폭 방 식들이 있으며, 그중 회로 구성이 간단하며 출력 극성의 변화 가 없는 비반전 증폭회로를 선정하여 LFP 배터리의 전압을 증 폭하였다. LFP 배터리의 동작 범위는 통상 2.5~3.65V이며 최대 3.8V까지 사용 가능하기에 5V까지 측정 가능한 BMS IC에서 비반전 증폭기의 최대 증폭률은 약 1.315 배이다.

제안하는 전압 증폭 회로의 오차를 줄이기 위해 Low offset voltage, Low noise 기능을 갖춘 OPA2187 OP-Amp와 0.1%의 허용 오차를 지닌 B급 저항을 사용하였으며 최종 전압 증폭률 은 1.3배로 설정하였다. 사용한 소자들의 사양은 표 1과 같으며 전체적인 회로 구성은 그림 3에 나타내었다.

Fig. 3 Configuration of proposed circuit

丑	1	제안 회로에 사용된 소자
Table	1	Elements used in the proposed circuit

Classification	Product	
OP-Amp	OPA2187	
BMS	LTC6802	
Resistor	PR5Y-(30, 100)KBI	

3. 실험 및 데이터 분석

3.1 실험 환경

전압 증폭 방식을 적용한 회로와 증폭이 없는 기존의 회로 는 각각 BMS와 배터리 충방전기에 동시에 연결되어 그림 4와 같이 전압을 측정한다. LFP 배터리의 경우 Tenpower社의 LFR26700-45HE를 사용하였으며, 동일한 조건에서 실험을 진 행하기 위해 항온 항습 챔버 내 온도는 상온(25℃)으로, 각 시 험 전 배터리 휴지시간은 12시간을 적용하였다. 실험을 위해 사용된 배터리 사이클러(Cycler)의 오차율은 5V 기준 ±0.05% 이며 사용한 BMS IC의 경우 최대 ±0.25%이다. 제안하는 회로 에서 측정한 전압 데이터는 기존 회로와 비교를 위해 전압 증 폭비(1.3배) 만큼 축소를 진행하였다.

두 회로의 상태추정 정확도 분석을 위해 SOC 100%에서 0%까지 CCD(Constant Current Discharge)와 SOC 50% 부 근에서 UDDS(Urban Dynamometer Driving Schedule) 테스 트 프로파일을 수행하였으며, 각 회로를 통해 측정된 데이터들 은 정확도가 높은 배터리 사이클러 데이터와 평균 절대 오차 (Mean Absolute Error; MAE)를 비교함으로써 검증하였다.

3.2 실험 데이터

그림 5, 6은 각각 CCD, UDDS 프로파일을 적용하였을 때 수집된 전압 데이터를 보여주고 있다. CCD 프로파일에서 증폭 된 전압을 수집한 회로의 MAE 값은 0.573mV이며, 기존 회로 의 MAE 값은 1.493mV로 약 62%(0.92mV) 개선됨을 확인할 수 있었다. UDDS 프로파일의 경우에도 제안하는 회로의 MAE 값은 1.271mV, 기존 회로의 MAE 값은 2.652로 약 52%(1.381mV) 개선되었다.

UDDS 프로파일의 경우 부하 변동성이 높은 EV의 주행 데 이터를 모사하므로 CCD 프로파일에 비해 MAE 값이 높게 형 성되었으며, 이러한 부분에서 전압 증폭을 통해 얻은 데이터는 기존 데이터에 비해 높은 추정 성능을 보이는 것을 그림 7에서 볼 수 있다.

Fig. 6 UDDS profile measurement data

표 2 각 프로파일 별 MAE 비교 Table 2 MAE comparison of each profile

	Circuit A	Circuit B	Increase rate
CCD profile	0.573[mV]	1.493[mV]	62%
UDDS profile	1.271[mV]	2.652[mV]	52%

Fig. 7 Estimation accuracy of the proposed circuit

4. 결론

본 논문은 전압 곡선의 기울기가 낮은 LFP 배터리의 상태 추정 정확도를 향상시키기 위한 전압 증폭 회로를 제안하고 있 다. 제안하는 회로의 검증을 위해 부하 변동성이 다른 두 개의 프로파일을 적용하여 실험을 진행하였으며 LFP 상태추정 정확 도는 기존에 비해 약 50% 이상 상승하였다. 특히, 전압 변화율 이 낮은 중간 영역(50%) SOC에서도 준수한 추정 성능을 보이 는 것을 확인할 수 있었다.

추가로, 논문에서 제안하는 회로에 칼만 필터나 딥러닝 등의 소프트웨어적 보정 기법을 접목한다면, LFP 배터리를 사용하 는 ESS, EV 및 기타 모빌리티 분야에서 상태 추정의 정확도 가 크게 향상될 것으로 기대된다.

이 논문은 2024년 국립한국교통대학교 지원을 받아 수행 하였음

참 고 문 헌

[1] Beom-Jun Kim, Seok-Jin Na and In-Ho Cho, "Fire

Prevention and Early Extinguishing Technology of Lithium-ion Battery Pack Applied to Urban Air Mobility (UAM) and Drone System," *Journal of the Korean Society for Railway*, Vol. 26, No. 6, pp. 454–461, 6 2023.

- [2] Jahun Koo, Jeongwoo Lim, Nayun Kim and Chunjoong Kim, "Research Trend in Olivine Structured LiMn(1-x)Fe(x)PO(4) Cathode Materials in Li-Ion Batteries," *Journal of the Korean Battery Society*, Vol. 3, No. 1, pp. 88–97, 7 2023.
- [3] Tran, Manh-Kien, et al, "Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA," *Batteries*, Vol. 7, No. 3, p. 51, 2021.
- [4] Farmann, A., & Sauer, D. U, "A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries," *Journal* of *Power Sources*, Vol. 347, pp. 1–13, 4 2017.
- [5] "LTC6802-1 Multicell Battery Stack Monitor," <u>https://www.analog.com/media/en/technical-documentatio</u> <u>n/data-sheets/ltc6802-1.pdf</u>(accessed on May 7 2024).