J2954 기반 결합계수 변동과 120 Hz 충전 전류 리플을 고려한 3.3 kW 전기자동차용 무선 충전시스템 설계 분석

현동우, 추창엽, 이영석, 박기범 한국과학기술원

Design Analysis of 3.3 kW Wireless Charging System for EVs Considering Coupling Coefficient and 120 Hz Charging Current Ripple Based on J2954

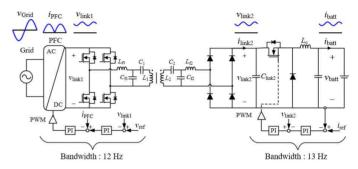
Dong-Woo Hyun, Chang-Yeob Chu, Youngseok Lee, Ki-Bum Park Korea Advanced Institute of Science and Technology

ABSTRACT

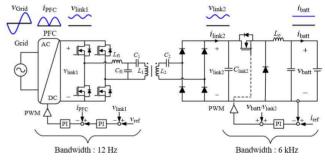
본 연구에서 분석하고자 하는 SAE J2954 WPT2 코일의 경우, Double-Sided LCC 구성을 기본 보상회로로 고려하고 있으며, 해당 보상회로 이외에 다른 고차원 보상회로에서의 적합성에 대해서 분석해 볼 필요가 있다. 따라서, 본 논문에서는 Double-Sided LCC 보상회로와 LCC-Series 보상회로를 활용하여 J2954 WPT2/Z3 코일 기반 3.3 kW 전기자동차용 무선충전시스템을 구축하고, 각 시스템의 손실을 분석한다. 또한, 각 보상회로의 출력 특성을 고려하여 Post-Regulator의 전류제어 시스템을 설계하고, 이들의 성능을 결합계수 변동과 충전전류의 120 Hz 리플을 중점으로 비교 분석한다.

1. 서론

1차측 LCC 구조의 고차원 보상회로는 1차측 코일에 흐르는 전류가 부하와 결합계수에 무관하다는 이점으로 인해 무선 충 전시스템에 널리 사용되고 있다.[1-3] SAE J2954 WPT2 코일의 경우, Double-Sided LCC 구성을 기본 보상회로로 고려하고 있 으므로 본 논문에서는 타 고차원 보상회로에서의 적합성에 대 해서 분석한다. 먼저 Constant Current (CC) 출력의 Double-Sided LCC 보상회로와 Constant Voltage (CV) 출력의 LCC-Series 보상회로를 WPT2/Z3 코일을 사용하여 설계한 후, 각 보상회로의 출력 특성을 고려한 Post-Regulator의 전류 제 어 시스템을 설계하여 그림 1과 같은 결합계수 변동에 강인한 3단 무선 충전시스템을 구축한다. 충전 전류 제어 시스템의 대 역폭은 Double-Sided LCC 기반 시스템의 경우 13 Hz, LCC-Series 기반 시스템의 경우 6 kHz로 보상회로의 출력 특 성에 따라 차이가 나게 된다. 마지막으로 시뮬레이션을 통해 PFC 동작으로 인해 발생하는 충전 전류의 120 Hz 리플 및 시 스템의 손실을 결합계수 변동에 따라 비교 분석한다.


2. 고차원 보상회로

2.1 SAE J2954 WPT2/Z3


 $3.3~{\rm kW}$ 의 충전 전력 및 차량 코일에서 바닥 코일까지의 간격을 고려해서 SAE J2954의 WPT2/Z3 코일을 선정하였으며, 자세한 사양은 표 1에 나타내었다. [1]

2.2 Double-Sided LCC (Load-Independent CC)

Double-Sided LCC 보상회로에서 Zero Phase Angle (ZPA) 조건을 만족하면서 부하에 무관한 CC 출력을 나타내는 공진 주파수는 다음과 같다.^[2]

(a) Double-Sided LCC Based System

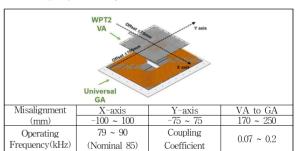
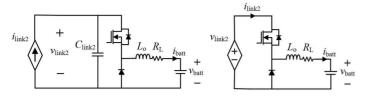

(b) LCC-Series Based System

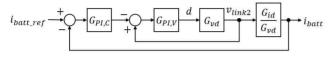
그림 1 3단 무선 충전시스템 회로도

Fig. 1 Circuit Diagram of 3-Stage Wireless Charging System

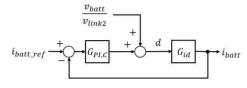
丑 1 SAE J2954 WPT2/Z3


Table 1 SAE J2954 WPT2/Z3

$$\omega_r = \frac{1}{\sqrt{L_{tr}C_{tr}}} = \sqrt{\frac{C_1 + C_{f1}}{L_1C_1C_{f1}}} = \frac{1}{\sqrt{L_{tr}C_{tr}}} = \sqrt{\frac{C_2 + C_{f2}}{L_2C_3C_{f2}}}$$
(1)


Buck 컨버터가 Post-Regulator로 사용된 경우, 충전 전류의 수식은 다음과 같이 나타낼 수 있다.[2]

$$i_{batt} \propto \frac{k\sqrt{L_1 L_2} v_{link1}}{\omega_r L_{f1} L_{f2}} \frac{v_{link2}}{v_{batt}}$$
(2)



(a) Current Source model 그림 2 Buck 컨버터 등가 모델 (b) Voltage Source model

Fig. 2 Buck Converter Equivalent Model

(a) Current Source model

(b) Voltage Source model

그림 3 전류 제어 블록도

Fig. 3 Current Control Block Diagram

Double-Sided LCC 보상회로의 CC 출력으로 인해 충전 전류는 부하에 무관하고 결합계수에 비례한다. 결합계수가 감소하여 보상회로의 출력 전류가 감소하면 Buck 컨버터에서 2차측 DC 링크 전압을 제어하여 충전 전류를 일정하게 조절한다.

2.3 LCC-Series (Load-Independent CV)

LCC-Series 보상회로에서 ZPA 조건과 부하에 무관한 CV 출력을 동시에 만족하는 공진 주파수는 다음과 같다.^[3]

$$\omega_r = \frac{1}{\sqrt{L_{f1}C_{f1}}} = \sqrt{\frac{C_1 + C_{f1}}{L_1C_1C_{f1}}} = \frac{1}{\sqrt{L_2C_2}}$$
(3)

2차측 DC 링크 전압은 LCC-Series 보상회로의 CV 출력으로 인해 수식 (4)와 같이 부하에 무관하며 결합계수에 비례한다.

$$v_{link2} \propto \frac{k\sqrt{L_1L_2}\,v_{link1}}{L_{f1}} \tag{4} \label{eq:4}$$

$$i_{batt} \propto \frac{k\sqrt{L_1L_2}\,v_{link1}}{L_{f1}}\,\frac{i_{link2}}{v_{batt}} \eqno(5)$$

수식 (5)의 충전 전류는 결합계수와 2차측 DC 링크 전류에 비례하므로 결합계수가 변동하였을 때 Buck 컨버터에서 2차측 DC 링크 전류를 제어하여 충전 전류를 일정하게 조절한다.

3. Post-Regulator의 전류 제어 시스템 설계

공진 시 보상회로의 부하에 무관한 출력 특성에 따라 Post-Regulator의 입력 특성이 결정되므로 Post-Regulator의 전류 제어기를 설계할 때 보상회로의 출력 특성을 고려해야 한다. 충전 전류를 결합계수 변동에 강인하도록 조절하기 위한 전류제어 시스템은 PI 제어기를 사용하여 구성한다.

3.1 전류원 입력

앞서 설명하였듯이 Double-Sided LCC 보상회로는 부하에 무관한 CC 출력을 나타내므로 Buck 컨버터의 입력을 그림 2 (a)와 같이 결합계수에 종속되는 종속 전류원으로 간주할 수 있다. 간소화된 Buck 컨버터 모델은 소신호 모델링 기법을 사용하여 다음과 같이 행렬로 표현할 수 있다.^[4]

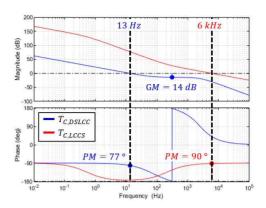


그림 4 개루프 전달함수의 보드 선도 Fig. 4 Bode Plot of Open-Loop Transfer Function

$$\begin{bmatrix} \frac{d\hat{i}_{batt}}{dt} \\ \frac{d\hat{v}_{link2}}{dt} \end{bmatrix} = \begin{bmatrix} \frac{-R_L}{L_o} & \frac{D}{L_o} \\ \frac{-D}{C_o} & 0 \end{bmatrix} \begin{bmatrix} \hat{i}_{batt} \\ \hat{v}_{link2} \end{bmatrix} + \begin{bmatrix} \frac{V_{link}}{L_o} \\ \frac{-I_{batt}}{C_o} \end{bmatrix} \hat{d}$$
(6)

위의 행렬을 사용하여 유도한 시비율(d)에 대한 충전 전류 (i_{batt}) 와 2차측 DC 링크 전압 (v_{link2}) 전달함수는 다음과 같다.

$$G_{id}(s) = \frac{\hat{i}_{batt}}{\hat{d}} = \frac{C_{link2} V_{link2} s - DI_{batt}}{L_o C_{link2} s^2 + R_L C_{link2} s + D^2}$$
 (7)

$$G_{vd}(s) = \frac{\hat{v}_{link2}}{\hat{d}} = \frac{-I_{batt} \left(L_o \, s + R_L \right) - D \, V_{link2}}{L_o \, C_{link2} \, s^2 + R_L \, C_{link2} \, s + D^2} \tag{8} \label{eq:gatter}$$

Double-Sided LCC 보상회로의 CC 출력으로 인해 시비율에 대한 충전 전류 전달함수(G_{id})에 위상을 지연시키는 우반면 영점이 65.65 Hz에 위치해 있으므로 한 개의 PI 제어기만으로는 적절한 대역폭을 설계하기 어렵다. 그러므로, 그림 3 (a)와 같이 전압 제어 루프를 내부에 추가하여 두 개의 PI 제어기로 대역폭을 향상시키는 방법을 채택하였다. 45 이중 루프로 구성된 전류 제어 시스템의 개루프 전달함수는 다음과 같으며, 보드선도를 그림 4에 파란 실선으로 표시하였다.

$$T_{C,DSLCC}(s) = G_{PI,C} \left(\frac{-G_{PI,V}G_{vd}}{1 - G_{PI,V}G_{vd}} \right) \frac{G_{id}}{G_{vd}}$$
(9)

3.2 전압원 입력

LCC-Series 보상회로의 CV 출력으로 인해 Buck 컨버터의 입력은 그림2 (b)와 같이 결합계수에 종속되는 종속 전압원으로 표현할 수 있다. 전압원 입력의 Buck 컨버터 모델에 상태 공간 평균화 기법을 적용하면 다음과 같은 상태 공간 평균 방정식을 얻을 수 있다.^[4]

$$L_o \frac{di_{batt}}{dt} + R_L i_{batt} = dV_{link2} - V_{batt}$$
 (10)

수식 (10)의 방정식에 존재하는 비선형 성분은 그림 3 (b)에 나타난 전향 보상으로 상쇄할 수 있으며, 시비율에 대한 충전전류 전달함수를 다음과 같이 유도할 수 있다.^[4]

$$G_{id}(s) = \frac{I_{batt}}{d} = \frac{V_{link2}}{L_c s + R_t}$$
 (11)

$$T_{C,LCCS}(s) = G_{PI,C} G_{id}$$

$$\tag{12}$$

전류 제어 시스템의 개루프 전달함수는 수식 (12)와 같으며, 그림 4에 붉은 실선으로 보드선도를 나타내었다. 전류원 입력 의 Buck 컨버터 모델에서 우반면 영점의 영향으로 인해 이중

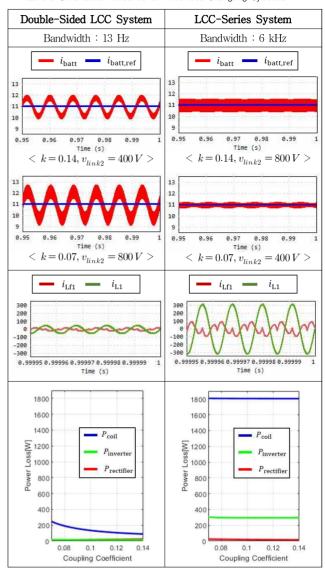
2 무선 충전시스템 파라미터 Table 2 Wireless Charging System Parameters

WPT Coil	L_1	$40.3\mu H$	L_{2}	$43.3\mu H$
Double-Sided LCC	$L_{\!f1}, L_{\!f2}$	$19.2\mu H$	C_1	166nF
	$C_{\!f1},C_{\!f2}$	183nF	C_2	145nF
	f	85kHz	v_{link2}	400V
LCC-Series	$L_{\!f1}$	$3.1\mu H$	C_1	94.2nF
	$C_{\!f1}$	$1.1\mu H$	C_{2}	81nF
	f	85.7kHz	v_{link2}	800V
Buck	C_{link2}	$50 \mu F$	$L_{\!_{o}}$	3mH
	f	60kHz	v_{batt}	300V

루프 제어 시스템을 구성하였음에도 개루프 전달함수의 이득교 차 주파수는 13 Hz로 비교적 낮게 설계되었고, 전압원 입력의 Buck 컨버터 모델에서는 스위칭 주파수의 1/10인 6 kHz로 설 계하였다.

4. 시뮬레이션

무선 충전시스템의 설계 사양을 표 2에 정리하였으며, 1차측 DC 링크 전압은 PFC에서 400 V로 제어하고, 2차측 DC 링크 전압은 결합계수 변동 및 Post-Regulator의 동작에 따라 400 V에서 800 V까지 인가된다. 코일의 결합계수를 설계 기준인 0.14에서 최저 0.07까지 변동하면서 시뮬레이션을 수행하였다. 표 3에 나타난 것처럼 PFC 동작으로 인해 발생하는 120 Hz 리플이 충전 전류에 미치는 영향은 전류 제어 시스템의 대역폭 이 낮은 Double-Sided LCC 기반 시스템에서 LCC-Series 기 반 시스템보다 크다는 것을 확인할 수 있다. 또한, 충전 전류의 120 Hz 리플의 크기는 결합계수에 반비례하였으며, 60 kHz 리 플의 크기는 2차측 DC 링크 전압에 비례하였다. 고차원 보상 회로의 1차측 보상 인덕터와 1차측 코일에 흐르는 전류를 표 3 에 나타내었다. 수식 (13)과 같이 고차원 보상회로의 1차측 코 일에 흐르는 전류는 부하와 결합계수에 무관하고, 1차측 보상 인덕턴스 (L_{f1}) 에 반비례하므로 L_{f1} 이 비교적 낮은 LCC-Series 보상회로의 1차측 코일에 높은 전류가 흘러 표 3에 나 타난 것과 같이 큰 손실이 발생한다.[2,3] 이러한 손실을 저감하 기 위해서는 인덕턴스가 높은 코일을 사용하여 보상 인덕턴스 를 높게 설계해야 한다.


$$i_{L1} \propto \frac{v_{link1}}{w_r L_{f1}} \qquad (v_{link1} = 400 V)$$
 (13)

LCC-Series 보상회로는 WPT2/Z3의 주어진 코일 인덕턴스 및 동작 주파수에는 적합하지 않으나, 설계 제약이 없는 어플 리케이션에서는 하드웨어 및 제어 2가지 측면 모두 좋은 성능 을 가지는 설계가 가능하다는 장점이 있다.

5. 결론

본 논문에서는 Double-Sided LCC와 LCC-Series, 두 고차 원 보상회로를 J2954 WPT2/Z3 코일을 사용하여 설계한 후, 각 보상회로의 출력 특성을 고려하여 Post-Regulator의 전류 제어 시스템을 설계하였다. 두 무선 충전시스템을 비교해 보았 을 때, 충전 전류의 120 Hz 리플은 전류 제어 시스템의 대역폭 이 높은 LCC-Series 기반 시스템에서 작게 나타났지만, 무선 충전시스템의 손실은 Double-Sided LCC 기반 시스템에서 더 욱 낮았다. WPT2/Z3 코일에 적합한 고차원 보상회로는 고효 율의 Double-Sided LCC 구성이지만, 배터리 수명에 악영향을 주는 120 Hz 리플을 저감하기 위한 추가적인 제어 또는 DC 링크 커패시터의 부피 증가가 요구될 수 있다.

3 무선 충전 시스템의 시뮬레이션 결과 Table 3 Simulation Results of Wireless Charging Systems

논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2022-0-00452, 로봇향 3.3kW급 군집 무선충전 핵심기술 개발)

참 고 문 헌

- [1] SAE International, "Wireless Power Transfer for
- SAE International, "Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology", SAE J2954 RP, Nov. 2017.

 W. Li, H. Zhao, J. Deng, S. Li and C. C. Mi, "Comparison Study on SS and Double-Sided LCC Compensation Topologies for EV/PHEV Wireless Chargers," IEEE Transactions on Vehicular Technology, val. 65, pp. 4420, 4420, Lyrs, 2016.
- vol. 65, no. 6, pp. 4429-4439, June. 2016.

 [3] Y. Wang, H. Wang, T. Liang, X. Zhang, D. Xu and L. Cai, "Analysis and design of an LCC/S compensated resonant converter for inductively coupled power transfer", 2017 IEEE Transportation Electrification
- Tailsportation Conference and Expo, pp. 1-5, 2017
 [4] 김일송, PSIM 과 MATLAB을 활용한 전력변환 제어기 설계, 홍릉, 2023.
 [5] K. Li, S. -C. Tan and R. S. Y. Hui, "ON Effect of
- Right-Half-Plane Zero Present in Buck Converters With Input Current Source in Wireless Power Receiver Systems", IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6364-6374, June. 2021