## 800V 전기 자동차용 GaN 기반 단상/3상 호환 22kW급 초고밀도 OBC 개발

배창규, 이한림, 이태일 HL 만도

# Development of GaN-based single-phase/three-phase compatible 22kW ultra-high density OBC for 800V electric vehicles

Changkyu Bai, Hanlim Lee, Taeil Lee HL Mando

#### ABSTRACT

본 논문에서는 800V 전기 자동차 (EV) 용 GaN 기반 모듈 형 구조의 차량 탑재형 충전기 (OBC) 를 제안한다. 제안하는 OBC는 2단 기반의 단상 7.4kW급의 단위 모듈을 사용하므로 단상/3상 최대 22kW의 충전 전력을 공급하도록 확장할 수 있 다. AC-DC 컨버터로는 인터리브드 토템폴 역률 보정 회로 (PFC) 를 적용하여 입력 전류 리플을 감소시켜 필터 사이즈를 줄인다. 절연형 DC-DC 컨버터로는 공진형 스택드 액티브 브 리지 (R-SAB) 회로를 적용하여 800V 배터리의 높은 전압에도 불구하고 650V급 GaN 스위치를 적용할 수 있도록 한다. 제안 된 R-SAB는 강압 및 승압 직렬 공진 회로 (SRC) 로 동작하 며, 배터리 측의 넓은 출력 전압 이득 범위를 만족한다. GaN 스위치 적용을 통해 고주파 스위칭이 가능하여 AC-DC 측은 100kHz로, 절연형 DC-DC 측은 400kHz<sup>-1.3Mhz</sup>로 동작한다. 제안하는 22kW급 모듈형 OBC는 자동차용 시작품으로 제작되 었으며, 4kW/L의 전력 밀도와 96.0%의 피크 효율을 달성했다.

## 1. 서론

지구 온난화와 기후 변화로 인해 전 세계 연료 소비가 증가 함에 따라 기존 내연 기관 (ICE) 기반 차량을 생산하던 자동차 제조업체는 친환경 전기자동차 (EV) 기업으로 탈바꿈하고 있 다. 하지만 전기자동차는 긴 충전 시간과 제한된 주행거리로 인해 활성화에 어려움을 겪고 있으며, 이에 따라 제조사들은 보다 큰 출력과 전력 밀도의 차량 탑재형 충전기 (On-Board Charger, OBC) 를 요구하고 있다. 따라서 OBC는 22kW급까지 용량이 확대되고 있다<sup>[1]</sup>.

11kW 및 22kW급 대응을 위해 널리 사용되고 있는 방식은 모듈러 구조의 단상/3상 호환 구조이다<sup>[2-3]</sup>. 이는 3상 인버터 구조의 OBC와는 달리 단상과 3상 용량의 차이가 없이 모두 대응 가능하며 OBC 전력 용량의 확장이 용이한 점이 장점이 다. 또한 DC링크 전압을 낮게 설계할 수 있어 650V급 GaN 소 자를 사용할 수 있다. 800V 배터리 측 대응을 위해서는 다중 레벨 토폴로지인 스택형 하프 브리지 회로를 사용할 수 있어, 마찬가지로 650V급 GaN 소자를 사용할 수 있다<sup>[4]</sup>. GaN의 고 주파 동작은 자기 전력 부품의 크기를 줄일 수 있으며, 이는 OBC의 전력 밀도의 증가로 이어진다.

제안하는 22kW급 OBC는 7.4kW급 모듈의 3 병렬 구조이다. AC-DC 측은 입력 전류 리플이 낮아 수동 소자 사이즈를 줄일 수 있는 인터리브드 토템폴 역률 보정 회로 (PFC) 를 사용했다. DC-DC 측은 스택형 액티브 브리지 (R-SAB) 회로를 사용했다. 또한 LLC 및 CLLLC 컨버터에 비해 주파수 가변 범위를 좁히기 위해 직렬 공진 강압 모드 확장 위상 천이 기법 (EPS)과 직렬 공진 승압 모드 위상 천이 펄스폭 변조 기법 (PSPWM)을 사용했다.

본 논문에서는 인터리브드 토템폴 PFC와 R-SAB를 적용한 22kW급 고밀도 OBC를 개발했다. 또한 3kW급 LDC를 통합하 여 ICCU (Integrated Charging Control Unit) 차량용 시작품을 제작했다. 시작품에 대한 검증 시험을 진행하였으며, AC-DC 컨버터 정격 효율 98.1%, DC-DC 컨버터 최대 정격 효율 97.9%, 입력 220V, 출력 500~900V 환경에서 2단 통합 최대 정 격 효율 96.0%를 달성했다.

## 2. 제안하는 22kW ICCU 시스템

## 2.1 제안하는 ICCU 전력 시스템 구성도

제안하는 ICCU의 시스템 구성도는 그림 1과 같다. ICCU는 OBC와 LDC를 단일 패키지에 통합시킨 제품으로 추가적인 전 력 밀도 향상 및 단가 절감을 이뤄낼 수 있다. OBC의 AC-DC 컨버터의 경우 인터리브드 토템폴 PFC 회로를 적용하였으며, 절연형 DC-DC 컨버터의 경우 CLLC 공진 탱크의 R-SAB 회 로를 적용하였다.



그림 1 제안하는 ICCU 시스템 구성도 Fig. 1 Proposed ICCU system configuration

## 2.2 AC/DC 부 회로 설계 2.2.1 인터리브드 토템폴 PFC

제안하는 AC-DC 컨버터의 경우 인터리브드 토템폴 PFC 회로를 사용한다. 인터리브드 토템폴 PFC의 경우 토템폴 PFC 에 비해 전류 리플이 작아 입력 필터 사이즈를 저감할 수 있어 컨버터의 소형화에 유리하다. 그림 2는 100kHz 동작 시 단일 토템폴 PFC와 인터리브드 토템폴 PFC의 시뮬레이션 전류 파 형이다.



그림 2 인터리브드 토템폴 PFC의 전류 파형 시뮬레이션 Fig. 2 Simulation waveform of interleaved totem pole PFC Current

## 2.2.2 PFC 인덕터 소자 설계

인터리브드 토템폴 PFC의 인덕터 설계는 아래와 같다.

$$L_{ind} \ge \frac{V_{g,rms}^2}{(\% Ripple)^* (P_{PFC}/2)} * \left(1 - \frac{\sqrt{2} * V_{g,rms}}{V_{link}}\right) * T_s \qquad (1)$$

100kHz 기준 리플율이 20%일 때 최소 인덕턴스 조건은 145uH이다.

## 2.3 절연형 DC/DC 부 회로 설계 2.3.1 R-SAB의 강압 모드 동작 원리

강압 모드의 경우 R-SAB의 확장 위상 천이 기법 (EPS) 을 사용한다. 상세 동작 파형은 그림 3과 같으며 모든 스위치는 영 전압 스위칭 (ZVS) 를 성취한다. 이때의 1차측과 2차측의 위상 천이에 대한 시비율은 *D*<sub>sys</sub>로 정의하며 1차측의 내부 위 상 천이 시비율은 *D*<sub>huck</sub>으로 정의한다.



#### 2.3.2 R-SAB의 승압 모드 동작 원리

승압 모드의 경우 R-SAB의 위상 천이 펄스폭 변조 기법 (PSPWM) 을 사용한다. 상세 동작 파형은 그림 4와 같으며 모 든 스위치는 ZVS를 성취한다. 이때의 1차측과 2차측의 위상 천이에 대한 시비율은 D<sub>sps</sub>로 정의하며 2차측의 펄스폭 변조





#### 2.3.3 가변 주파수 일정 오프 전류 제어 기법

상태-평면 궤적의 정상 상태 해석을 통해 제안하는 컨버터 의 정의된 동작점을 찾을 수 있다. 1차측과 2차측의 위상 천이 에 의한 스위치의 턴 오프 전류를 *I<sub>ZVS</sub>로* 정의하며 이는 *ZVS* 를 하기 위해 필요한 에너지를 통해서 구할 수 있다.

$$I_{ZVS} \geq \frac{2C_{oss(tr)}V_{ds}}{t_{dead}}$$
(2)

그림 5는 *I<sub>ZVS</sub>*값을 만족하는 제안하는 R-SAB의 동작 위상 시비율이다. 그림 6은 주파수 및 이득에 대한 전력 그래프이다.



그림 5 f<sub>s</sub>, M vs D<sub>sps</sub> (초록), D<sub>buck</sub>, D<sub>boost</sub> (파랑) Fig. 5 f<sub>s</sub>, M vs D<sub>sps</sub> (green), D<sub>buck</sub>, D<sub>boost</sub> (blue)



그림 6 3-d 그래프 *f<sub>s</sub>, M* vs P Fig. 6 3-d graph of *f<sub>s</sub>, M* vs P

## 2.4 ICCU 패키징 설계

그림 7은 제안하는 ICCU의 시작품이다. 22kW급 모듈러 구 조의 OBC와 3kW급 LDC가 하나의 패키지에 통합되어 있다. 제작된 시작품의 부피는 6.25L이며, 전력밀도는 4kW/L를 달성 했다. Navitas社의 TOLT 패키지의 Top-side cooling GaN 소 자인 NV6524와 NV6525를 통해 전력부 소형화가 가능했고, 이 를 통해 고밀도 ICCU 설계가 가능했다.



그림 7 제안하는 ICCU 시작품 (348mm\*315mm\*57mm) Fig. 7 Prototype of proposed ICCU (348mm\*315mm\*57mm)

## 2.5 ICCU 실험 결과

제안하는 ICCU는 입력 전압 220Vac, 링크전압 400Vdc, 출력 전압 500~900V 환경에서 테스트했다. 그림 8은 정격 7.4kW의 AC-DC 컨버터 실험 파형이며 이때 효율은 98.1%를 달성했다. 그림 9는 정격 7.4kW의 DC-DC 컨버터 실험 파형이다. 강압 모드의 경우 96.8%, 승압 모드의 경우 96.8%, 1:1 모드의 경우 최대 효율 97.9%를 달성했다. 그림 10의 경우 제안하는 DC-DC 컨버터의 효율 측정 결과이다.

## 3. 결론

800V 전기 자동차용 GaN 기반 단상/3상 호환 22kW급 초고 밀도 OBC를 개발했다. AC-DC 측은 100kHz, DC-DC 측은 400kHz<sup>-1.3Mhz의</sup> 고주파 동작을 통해 고밀도화를 달성했다. 제안하는 OBC는 ICCU 패키지에 통합되어 자동차용 시작품으 로 제작되었으며, ICCU 기준 4kW/L의 전력 밀도와 96.0%의 피크 효율을 달성했다. 추후 AC-DC 및 DC-DC 3 병렬 모듈 의 통합 테스트 및 3kW LDC 부분의 검증도 진행할 예정이다.





## 참 고 문 헌

- H. Wouters and W. Martinez, "Bidirectional on-board chargers for electric vehicles: State-of-the-art and future trends," IEEE Trans. Power Electron., vol. 39, no. 1, pp. 693 - 716, Jan. 2024.
- [2] Texas Instruments, "GaN-Based, 6.6-kW, bidirectional, onboard charger." Accessed: Aug. 3, 2022. [Online]. Available: https://www.ti.com/tool/PMP22650
- [3] S. Mukherjee, J. M. Ruiz, and P. Barbosa, "A high power density wide range DC - DC converter for universal electric vehicle charging," IEEE Trans. Power Electron., vol. 38, no. 2, pp. 1998 - 2012, Feb. 2023.
- [4] M. Jia, H. Sun, J. Cai, H. Zhang, Z. Zhou, and J. Chen, "GaN and SiC Based 500kHz Resonant Bidirectional DC/DC Design for 800V OBCM Application," 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Los Angeles, CA, USA, 2024.