

VIN DC Charger Product Solutions KIPE Conference

Dr. Evangelos Theodossiu Sr. Product Marketing Manager 02.07.-04.07.2024

VIN DC Charger Product Solutions

- 1. DC Charger Market
- 2. DC Charger Trends
- 3. DC Charger System Architectures
- 4. SiC Device and Package Technologies
- 5. DC Charger Product Roadmap
- 6. DC Charger VIN reference designs

VIN DC Charger Product Solutions

DC Charger Market

- / The two closely interlinked markets xEVs and EV charging infrastructure are growing rapidly
- At the end of 2023, there were 3.9 million public charging points worldwide**, more than 1.2 million of which were installed in 2023, about a 44% increase on 2022 stock. The projection to 2030 is 15 million public charging points worldwide
- / The total EV DC charger market value will reach \$17.9 billion by 2028, and the power device market value for DC charger will reach \$610 million by 2028*
- / Currently the power device market value for DC chargers is largely dominated by discrete devices. The share of power modules (IGBT and SiC) will increase rabidly in the coming year. Although silicon devices will continue to dominate the EV DC market, the SiC MOSFET device market will grow rapidly

/ Yole DC_Charging_for_Automotive_2023 Report

DC charger system market value in \$B, by power category

□ In 2021, the largest market segment in \$M was chargers of 50kW and lower. Nevertheless, the demand for high-power chargers is rapidly growing, with a strong demand for chargers with powers over 100kW. In 2028, the largest market value, \$8.9 billion, will be associated with the very high-power (≥200kW) charger market

Discrete device vs. power module market value in \$M

Vincotech

□ The share of power modules (IGBT and SiC) will increase rabidly in the coming years from 13% in 2021 to 39% in 2028 with a value of \$241 million

Charger supplier

- Most charger suppliers offer both AC and DC charging solutions
- Depending on the company strategy charger manufacturers make chargers inhouse (chargers based on in-house-made modules or monolithic ones) or use charger modules purchased from external suppliers

The market position of the main players for the "new" and rapidly growing DC charger market is continuously evolving and depending on how successful they are in accessing to rapidly-growing geographical markets and in offering high performance, high reliability, and attractive cost.

Yole Status_of_the_Power_Converter_Industry_2023

VIN DC Charger Product Solutions

DC Charger Trends

DC Charger Trends DC-Charger Trends and Key Drivers

Even if today and for the future as well the majority of EV will rely on private chargers mainly AC with 7kW, 11kW and 22kW, there will be a growing need for publicly accessible **DC fast chargers** in the next years

- Growing number of electrical vehicle users that can not charge their vehicles at home
- Battery capacity increase that makes overnight charging using lowpower AC Chargers no longer suitable

For mid and high power chargers, 30kW up to 350kW, we see trends like:

- The modular design is dominant over the monolithic design approach thanks to its benefits of high design flexibility and scalability. Typical power ratings for charger modules 30kW and 60kW
- The power module solution is preferred rather than the discrete solution with the benefits of optimal thermal management, simplified mechanical assembly, and low parasitic inductance
- SiC power modules will gain 35% of the total power module market for EV charging infrastructure by 2025*, and improve the fast-charger efficiency

For **commercial vehicles** like trucks and busses for long-haul trips on the move charging availability of 45min will be needed which will require 500-1200 kW chargers. A new standard will be needed: **MCS**

*Yole report "Power_SiC_2022_report"

DC Charger Trends DC-Charger Trends and Key Drivers

Trend towards higher system voltage, e.g. to Mega Watt Charger requirements

TOWARDS A HIGHER SYSTEM VOLTAGE

1,500V DC it's a today's voltage target for many high-power converter applications

Trend towards Microgrids: Design common high-voltage DC bus at voltage suitable for different applications.

DC bus can be designed at 500V, 1000V, 1500V or another suitable voltage level

Consumers are interested in combining their EV with home energy management systems

*Yole report "Status_of_the_Power_Converter_Industry_2023"

Page 11 Information is Vincotech confidential and proprietary. Do not reproduce nor distribute.

VIN DC Charger Product Solutions

DC Charger System Architectures

Information is Vincotech confidential and proprietary. Do not reproduce nor distribute.

DC Charger System Architectures

System Architecture 1: This is the **state-of-the-art system architecture** for DC Charger 10kW up to 350kW. Depending on output power, this can be a system built from one or more charger modules. Supply is taken from low-voltage 3-phase grid.

In some designs, the **DC/DC stage is split in 2.** These parts can be connected in series or parallel. This is done in order to coupe with the available **battery voltages: 400V and 800V**

System Architecture 2: The same as system architecture 1 but **bi-directional**. It is mainly designed for V2x applications

DC Charger System Architectures

System Architecture 3: Design aimed to serve the higher power (>150 kW) market, e.g. charging parks. A medium-voltage transformer furnishes power directly to the system. Separated windings per charger needed on the secondary side of transformer. The advantages of this system architecture are system costs and efficiency

Vincotech

VIN DC Charger Product Solutions

DC Charger System Architectures

AC/DC

/ There are several three-phase PFC topologies available which can be addressed with multiple 3L and 2L topologies with pros and cons in terms of efficiency, costs and design complexity

/ Each of these topologies will influence

- the blocking voltage rating of the semiconductors e.g. 650 V or 1200 V and as a result, the switching losses and the efficiency
- the total system costs, e.g. PFC inductor size and costs
 - At a given frequency the current ripple at 2L is twice as high as in 3L applications which has an impact on the inductor core material and size
- the thermal management, e.g. heat sink size
- the design e.g. uni- or bi-directional. For **bi-directiona**l charging the 3L SPFC and NPFC are suitable by replacing the boost diodes with switches, and the 2L 6pack per se

DC Charger System Architectures AC/DC

- **2L three-phase PFC topologies:** The most common used 2L PFC topology is 6PACK PFC Active Front End (AFE)
- It is the simplest topology and widely used in motion control as a motor inverter. It can be used as PFC in reverse mode
- All switches are 1200V rated which has an impact on the losses. On the other hand only one switch per phase is involved in the power flow at any time
- The control is straight-forward
- Bidirectional by nature

Vincotech

3L three-phase PFC topologies: Wide range of choice among different 3L PFC topologies

Neutral Boost PFC (NPFC, or T-Type)

- NPFC uses back-to-back switches, having the same emitter and thus needs only single gate driver
- The switches are 650V rated and the boost diodes 1200V
- The conduction losses are low, as only one component at a time is in series in the current path

Advanced Neutral Boost PFC (ANPFC)*

- ANPFC is a modified NPFC with 650V rated boost diodes
- Two components are always in series in the current path, thus higher conduction losses than NPFC
- Less costs for the 650V devices vs the 1200V devices

Symmetric Boost PFC (SPFC, or I-Type)

- Switches and Diodes are 650V rated
- Two components are always in series in the current path, thus higher conduction losses than NPFC
- Needs separate gate drive for the LS and HS switch

DC Charger System Architectures AC/DC

- / 30 kW Charger unit (Vin 230A, DC Link 800V, Ths 80°C, Tjmax <130°C)</p>
- Similar chip technology for the main devices
 - 2L-6PACK: 1200V/16mOhm SiC MOSFET
 - 3L-NPFC: 650V/22,5mOhm SiC MOSFET and 1200V/60A SiC Diode
 - 3L-ANPFC and -SPFC: 650V/22,5mOhm SiC MOSFET and 650V/60A SiC Diode

- 2L-6PACK is showing the best efficiency for fsw up to 60kHz, but has also high costs. The switching losses are limiting the efficiency at high switching frequencies
- NPFC has high efficiency also for higher fsw but with the drawback of higher costs because of the 1200V diodes
- ANPFC and SPFC are showing same efficiency, but ANPFC with single gate drive has a total cost advantage vs SPFC

Vincotech

DC Charger System Architectures AC/DC

Benchmark of 2L vs 3L in terms of inductor size and total costs

- PFC Inductor cost depends on the size and the required core material
- Core material suitable for higher ripple and frequency leads to higher cost and bigger size

Compact size efficient charger solution could be:

- <u>Inductor core material</u> is given (e.g. Ferrite core) → Inductor size and cost can be reduced
- Efficiency target: 99%

	2L →	3L
Inductor size and costs	100%	50%
Switching frequency	100% e.g. 50kHz	200% e.g. 100kHz
Inductor size and costs	100%	25%

 ✓ 2L-6PACK: 1200V SiC MOSFET
 ✓ 3L-NPFC: 650V SiC MOSFET and 1200V SiC Boost Diodes

1,0		
0,8		
0,6		
0,4		
0,2		
0.0		

Cost effective charger solution could be:

- <u>Inductor size is given</u> → Module price and Inductor core material price can be slightly reduced (soft iron powder core)
- Efficiency target: 99%

	2L	\rightarrow	3L
Switching frequency	100% e.g.	50kHz	50% e.g. 20kHz
Inductor core material (price)	100%		~90%
Semiconductor (price)	100%		60%
 ✓ 2L-6PACK: 1200V SiC ✓ 3L-ANPFC: 650V fast 650V fast Boost Diode 	MOSFET IGBT and es	Tot 1,2 1,0 0,8 0,6 0,4 0,2 0,0 20 Mode	tal Cost Benchmark

The table summarizes the pros and cons of each topology discussed in this presentation

	AFE (6PACK)	NPFC	ANPFC	SPFC
Switching levels	2L	3L	3L	3L
Main Switch Voltage [V]	1200	650	650	650
Main Diode Voltage [V]	1200	1200	650	650
Number of devices per phase (fast switches , fast diodes, rectifier diodes, protection diodes)	4	6	8	8
Gate drives / per phase	2	1	1	2
Bidirectional	Yes / no extra cost	Yes / with additional components => extra cost	Yes / with additional components => extra cost	Yes / with additional components => extra cost
Efficiency	>99% (up to fsw 60kHz)	>99% (up to fsw 100kHz)	>98,7% (up to fsw 100kHz)	>98,7% (up to fsw 100kHz)
Overall BOM costs / total cost	High / High	High / Low	Low / Low+	Low / Low

These values are subject to change in particular applications

Conclusion:

- The AC/DC stage of a DC fast charger can be addressed with several threephase PFC topologies
- Depending on the application requirements the pros and cons of the multiple designs have to be considered
- In practice, the 3L three-phase PFC topologies combined with SiC chip technology show the best trade-off between efficiency and overall total system costs

VIN DC Charger Product Solutions

DC Charger System Architectures

DC/DC

DC Charger System Architectures DC/DC

- / For the DC-DC power conversion stage two main isolated topologies are employed: the full-bridge LLC resonant converter, and the full-bridge phase-shift DAB. The first one is a pure frequency modulated configuration and the second operates with PWM
- / The full-bridge LLC converter with full bridge rectifier is on of the most used configuration for unidirectional charging. Main benefits
 - Reduce switching losses
 - Increase efficiency
 - Galvanic isolation
- / It is a soft switching topology (ZVS, ZCS) resulting in a very high peak efficiency around the resonant frequency
- / Multiple variants can be used for primary and secondary side with additional advantages and compromises
- / For **bi-directiona**l charging the full bridge rectifier on the secondary side has to be replaced with a full bridge

Product line 6 Pack **flowPACK SiC** New Product line Ultrafast Rectifier flowCON SiC

VIN DC Charger Product Solutions

SiC Device and Housing Technologies

By having multiple semiconductor sources Vincotech can offer a price and performance optimized power module. With its open & flexible vendor policy Vincotech provides the widest range of chip suppliers. VINcoSIM, the simulation tool with characterized switching pairs, supports fast and easy selection of the most fitting power module.

Vincotech follows a multi-source approach and strives to have at least two qualified sources wherever possible. Power semiconductors from a variety of manufacturers can be offered, and customers are recommended to release minimum two independent chipsets to secure long-term supply. Own inventory and capacity buffers provide flexibility and security. A strong supplier relationship management provides close collaboration and clear communication. Additionally a systematic risk management ensures early detection and mitigation of any supply issue.

/ Deep SiC device performance understanding

- Increasing number of players that provide power SiC devices with different device structures (e.g. planar, trench) and specification (e.g. voltage class, V_{GS})
- The selection of the optimal SiC device for a specific application requires a deep understanding of characteristic figures like static and dynamic losses on module level

/ Optimal layout design and pin arrangement

- A high power SiC module requires a large number of chips in parallel which makes the design and layout challenging
- The design of a very symmetrical chip layout impacts positively the total module efficiency
- / Why SiC Power Module Reliability Matters Increasing number of players that provide power SiC devices with different device

Information is Vincotech confidential and proprietary. Do not reproduce nor distribute.

SiC MOSFET have a positive temperature coefficient. The knowledge of the $\rm R_{ds,on}$ at operating temperature, such 125° C is key

Vincotech

- There is a huge variation among the different SiC device regarding the dependency of $R_{ds,on}$ vs. the temperature
- SiC supplier D is showing the best-in-class $R_{ds,on}$ temperature dependency, which is a good fit for soft-switching applications where static losses dominate. Also suitable for hard-switching applications switching at lower frequencies
- / Static losses are just the one side of the coin. For optimal selection you need also the knowledge of the dynamic losses
- Also in this case the trade-off between conduction and switching losses varies from SiC supplier and the used technology
- / SiC supplier A offer the best compromise between switching and conduction losses and SiC supplier C has the lowest switching losses at nominal current, or at partial load

Vincotech

/Why do the SiC chip solder joint face higher stress than a Si while a power cycling load?

Higher stress on the chip solder during temperature stress

a) Contrary to the superior electrical properties of SiC, the mechanical properties, specifically the Youngs Modulus, have an negative impact on the power cycling capability

b) On top, additional stress will applied on the solder joints because

- Smaller chip size
- Mission profiles with long period of max power, like in the case of EV charger
- High chip temperatures together with high current

Reinforcement of the chip solder joint is

crucial to improve the power cycling capability

With the introduction of a new solder alloy the SiC power cycling capability was pushed close to a level of cycling capability just like Si (with standard solder)

Assuming a charger mission profile with 24 cycles/day, constant dT of 100K and Tjmax 125°C, the estimated life time of a SiC power module would be ~15 years

Additionally the *flow* S3 and *flow* E3 modules feature VINcoPress and advanced die-attach technologies. Both provide the widely valued pre-applied phase-change thermal interface material (PC-TIM), the choice between solder or press-fit pins and optional AlN I

Housing Features

- VINcoPress technology
- Advanced die-attach technology
- Al₂O₃ and AIN DCB available
- Low inductive, 12mm housing
- Pre-applied PC-TIM rated for 150°C
- Press-fit and solder pin

Application Benefits

- Longer lifetime, greater reliability
- Increased power density
- Simple, economical module mounting

Vincotech

Pressure mapping images

Key Features

- Direct pressed substrate ٠
- Homogeneous pressure and Rth value distribution
- Rugged and reliable heat sink assembly

Benefits

- Higher power capability ٠
- Greater power density •

Vincotech

It takes ceramic materials with higher thermal conductivity to boost baseplate-less power modules' currentcarrying capability. Aluminum Nitride (AIN) can reduce the **thermal resistance** from semiconductor junction to heatsink while the VINcoPress technology maintains rugged and reliable heat sink assembly. **VINcoSIM**, our integrated simulation environment, served to benchmark AIN DCB's peak junction temperature in comparison with Al₂O₃ using a 3-level NPC (I-type) module for a solar inverter application. It confirmed that AIN increases power capability by more than 50% at the same junction temperature.

Key Features

- · Increases power modules' current carrying capability
- Delivers superior thermal performance
- · Decreases the thermal expansion coefficient
- Benefits
- Up to 50% more power from the same power module foot print
- Better performance from the same frame size

Conditions: V_{dc} = 1350 V, V_{ac} = 460 V, cosphi = 0.8, f_{sw} = 16 kHz, T_{hs} = 90°C, R_{g,on} = R_{g,off} = 2Ω

VIN DC Charger Product Solutions

DC Charger Product Roadmap

AC/DC

Comprehensive 2L and 3L PFC Portfolio for the AC/DC stage

Housing	Half-bridge	6PACK				
flow 1		–1200V/75m0hm-16m0hm SiC MC –Up to 30kW application power	DSFET			
flow S3	-1200V/3m0hm, SiC M0SFET* -Up to 120kW application power					
flow E1	–1200V/32m0hm,21m0hm,18m0hm,16m0hm SiC MOSFET –Up to 40kW application power	–1200V/75m0hm,32m0hm SiC M0 –Up to 20kW application power	DSFET			
flow E2	-1200V/8m0hm,5m0hm SiC MOSFET -Up to 75kW application power	–1200V/20m0hm,11m0hm SiC M0 –Up to 35kW application power	DSFET			
flow E3	-1200V/2m0hm SiC MOSFET		Housing	NPFC/MNPC	ANPFC	SPFC
			flow 0	-650V/75A,100A IGBT H5, with 1200V fast Si Diode or SiC SBD -650V/45m0hm SiC MOSFET -Up to 30kW application power	-650V/100A IGBT fast, with 1200V fast Si Diode or SiC SBD -Up to 30kW application power	-650V/50A,75A,100A IGBT H5/S5, with 1200V fast Si Diode -Up to 22kW application power
			flow 1	-650V/100A IGBT S5, with 1200V SiC SBD -650V/15m0hm SiC MOSFET -Up to 60kW application power	-650V/100A IGBT fast/S5 with 1200V SiC SBD -650V/15m0hm SiC MOSFET* -Up to 50kW application power	-650V/15mOhm SiC MOSFET* -Up to 50kW application power
			flow E2	-650V/15m0hm SiC MOSFET -1200V/11m0hm SiC MOSFET -Up to 60kW application power		
Assuming a typical	charging operation point: Vin 230V, Vdc 800V, fsw	40kHz, Ths 80°C	flow E3	-3xNPFC/MNPC 650V/15m0hm -Up to 50kW application power		

Page 34

*Assuming a typical charging operation point: Vin 230V, Vdc 800V, fsw 40kHz, Ths 80°C

Voltage	Product Line	Technology SiC Inside	Part Number	Product Family			RDS	ion	[mOl	nm]			Application Power rating*		20	23			20	24			202	25		
					2	3	5	8	16	18	21	32		Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4	Q1	Q2	Q3 (Q4	
		SiC MOSFET Gen3	10-EZ122PB032ME-PE07F18T	PE0x									up to 22 kW													
		SiC MOSFET Gen3	10-EZ122PA021ME-LJ6x										up to 30 kW													
	NOWDUAL ET SIC	SiC MOSFET Gen4	10-EZ122PA018MR-LJ6x	LJ6x									up to 30 kW													
		SiC MOSFET Gen3	10-EZ122PA016ME-LJ67F68T										up to 40 kW													
1200V	flowDUAL E2 SiC	SiC MOSFET Gen3	10-EY122PA008ME-LU38F08T										up to 60 kW													
			10-EY122PA005ME-L039F081	LU3x									up to 80 kW													Ongoing R&D
			10-EY122PA008ME01-LU38F06T										up to 75 kW													Project
	flowDUAL S3 SiC	SiC MOSFET Gen3/Gen4	B0-SP122PA003ME B0-SP122PA003MR	LM7x									up to 120 kW													Product Concept
	flowDUAL E3 SiC	SiC MOSFET Gen3	B0-EP122PA002ME-PG88F18T	PG8x									up to 150 kW													Serial Status

- Engineered to bring **maximum power density** and **greater**
- scalability to H-bridges and sixpacks
 Greater supply chain resilience with industry-standard housings (CTI >600)
- VINcoPress tech (for flow E3)
- Advanced **AIN** substrate

Outlook

- Concepts ongoing for flowDUAL E3/E3 SiC with 2xkV SiC MOSFET Tech
- Target applications 1500Vdc, like MCS

Voltage	Product Line	Technology SiC Inside	Part Number	Product Family	R _{DSon} [mOhm]						R _{DSon} [mOhm] Application Power rating*							202	24		2025			
					11 1	6 1	.8 20	32	36	5 40	75		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	flowPACK E1 SiC	SiC MOSFET Gen3	10-EZ126PB075ME-LS17F08T 10-EZ126PB032ME-LS18F08T	LS1x								up to 11 kW up to 20 kW												
	flowPACK E2 SiC	SiC MOSFET Gen3	10-EY126PB021ME-PJ17F18T 10-EY126PB011ME-PJ19F18T	PJ1x								up to 25 kW up to 35 kW												
		SiC MOSFET Gen1	10-EY126PB020MS02-PJ17F78T									up to 25 kW												
12001/		SiC MOSFET Gen1	10-PY126PA020MS-L227F08Y									up to 25 kW												
12000		SiC MOSFET Gen3	10-FY126PA032ME-L226F13 10-PY126PA016ME-L227F13Y									up to 22 kW up to 30 kW												
	flowPACK 1 SiC	SiC MOSFET Gen4	10-PY126PA036MR-L22x 10-PY126PA018MR-L22x	L22x								up to 22 kW up to 30 kW												
		SiC MOSFET Gen4	10-FY126PA042ME-L226F68 10-FY126PA021ME-L227F68									up to 20 kW up to 25 kW												
900V	flowPACK 1 SiC	SiC MOSFET Gen3	10-PY096PA035ME-L224F18Y	L22x								up to 22 kW												
650V	flowPACK 1 SiC	SiC MOSFET Gen4	10-FY086PA023MR-L222F48	L22x								up to 25 kW												

Ongoing R&D Project

Product Concep

Serial Status

*Assuming a typical charging operation point: Vin 230V, Vdc 800V, fsw 40kHz, Ths 80°C

Voltage	Product Line	Technology SiC Inside	Product Family	Part Number	RDSon [mOhm]			Application Power rating*	2023		202	24		202	25		
					11	15	45		Q1 Q2 Q3 Q4	Q1	Q2	Q3 Q4	l Q1	Q2	Q3	Q4	
1200V	flowMNPC E2 SiC	full SiC-MOSFET	1522	10-EY12NMA011ME30-LS28F18T				Up to 60 kW									
	flowMNPC E2 SiC	full SiC-MOSFET	LJZA	10-EY12NMA016ME-LS28F16T				Up to 50 kW									
	flowMNPC 1 SiC	full SiC-MOSFET	PG0x	10-PY12NMD016ME-PG08F18T				Up to 50 kW									
	flowMNPC 0 SiC	full SiC-MOSFET	M26x	10-FZ12NMA032ME				Up to 30 kW									
650V	flow3xMNPC E3 SiC	full SiC-MOSFET	PH0x	B0-EP12M3A015ME				Up to 50 kW									Project
	flowNPFC 0 SiC	SIC MOSFET/SIC SBD	M26x	10-FZ07LBA045ME				Up to 30 kW									Product Concent
	flowNPFC 1 SiC	SIC MOSFET/SIC SBD	PG0x	10-PY07LBA015ME-PG08J68T				Up to 60 kW									Product Concept
	flow3xNPFC E3 SiC	SIC MOSFET/SIC SBD	PH0x	B0-EP12L3A015ME				Up to 50 kW									Serial Status

New Optimized Pin-out Features

- Shorter DC+ to GND and DC- to GND distance
- Lower stray inductance
- Optimal commutation loops
- Symmetrical and short commutation loops with
- balanced operation in pos and neg half period
- Symmetrical gate commutation loops
- Easy to add separated gate resistance

*Assuming a typical charging operation point: Vin 230V, Vdc 800V, fsw 40kHz, Ths 80°C

Voltage	Product Line	Technology SiC Inside	Product Family	Part Number	Part Number		Application Power rating*		20	23		2	2024			20	25			
					11	15	45		Q1	Q2	Q3	Q4 (21 Q	2 Q	3 Q4	Q1	Q2	Q3	Q4	
1200V	flowMNPC E2 SiC	full SiC-MOSFET	1627	10-EY12NMA011ME30-LS28F18T				Up to 60 kW												1
	flowMNPC E2 SiC	full SiC-MOSFET	LJZX	10-EY12NMA016ME-LS28F16T				Up to 50 kW												1
	flowMNPC 1 SiC	full SiC-MOSFET	PG0x	10-PY12NMD016ME-PG08F18T				Up to 50 kW												1
	flowMNPC 0 SiC	full SiC-MOSFET	M26x	10-FZ12NMA032ME				Up to 30 kW												
6-	flow3xMNPC E3 SiC	Jull SiC-MOSFET	PH0x	B0-EP12M3A015ME				Up to 50 kW												Ongoin Project
	FlowNPFC U SIC	SIC MOSFET/SIC SBD	M26x	10-FZ07LBA045ME				Up to 30 kW												Product
	flowNPFC 1 SiC	SIC MOSFET/SIC SBD	PG0x	10-PY07LBA015ME-PG08J68T				Up to 60 kW												Houde
	flow3xNPFC E3 SiC	SIC MOSFET/SIC SBD	PH0x	B0-EP12L3A015ME				Up to 50 kW												Serial S

flow3xMNPC E3 SiC (PH0x)

Application: Bi-directional Topology: 3xMNPC PFC switch_NP: 650V SiC MOSFET PFC switch_DC: 1200V SiC MOSFET Housing: flow E3 Features: DClink caps and gate resistors optional

VIN DC Charger Product Solutions

DC Charger Product Roadmap

DC/DC

fastPACK SiC and New flowCON SiC Product Line for the DC/DC Stage

Housing	H-Bridge	2ph Ultrafast Rectifier	3ph Ultrafast Rectifier
flow 0	-1200V/75m0hm,32m0hm SiC MOSFET Gen3 and Gen4 -950V/35m0hm,16m0hm SiC MOSFET Gen3 -650V-750V/45m0hm,20m0hm SiC* MOSFET Gen3 and Gen4	-650V/20A SiC SBD	
flow 1	–1200V/11m0hm SiC MOSFET Gen3* –650V-750V/11m0hm SiC* MOSFET Gen3 and Gen4	-1200V/60A,100A,120A Si fast diode and 60A,80A,100A SiC SBD -650V/160A Si fast diode and 60A,80A,100A SiC SBD	- 650V/70A Si fast diode
flow E1	-1200V/32m0hm,16m0hm SiC MOSFET Gen3 -650V/21m0hm,16m0hm SiC MOSFET Gen3	-1200V/10A,30A SiC SBD	
flow E2	–1200V/16m0hm,11m0hm SiC MOSFET Gen3 –750V/20m0hm SiC MOSFET Gen4	-1200V/80A SiC SBD*	- 1200V/40A SiC SBD
flow S3		-1200V/80A SiC SBD	

*Assuming a typical charging operation point LLC: Vdc 800V, Vout 400V, fsw 100kHz, Ths 80°C

index index <th< th=""><th>025</th></th<>	025
IGBT 4 HS/CAL Diode P62x, P72x V23990-P627-F8x-PM V23990-P629-F48-PM V23990-P729-F4x-PM up to 12 kW	2 Q3 Q4
1200V IGBT fast H/CAL Diode IGBT 7 H7 / EC7 P62x 10-FZ124PA040F2-P629F38 Image: Constraint of the second se	
1200V IGBT 7 H7 / EC7 P62X 10-PC124PA040H7 up to 12 kW 0 <t< td=""><td></td></t<>	
IGBT4 HS/CAL Diode 10-xY124PA040SH-L588F48 up to 22 kW up to 22 kW factPACK 1 10-xY124PA080SH-L589F48	
IGBT fast H/CAL Diode LSOA 10-FY124PAU80F2-LS89F38 up to 22 kW up to 22 kW	
IGBT7 H7 / EC7 10-PY124PA080H7 up to 22 kW U U U	
650v IGBT5 H5/Rapid1S P62x, L62x 10-xZ074PA030SM-L623F08x 10-xZ074PA050SM-L624F08 V23990-P623-F5x-PM 10-xx074PA075SM-L625F0xx up to 22 kW up to 22 kW	
IGBT fast RGW/RGTV L62x 10-FZ074PA050RG-L624F88 up to 22 kW up to 22 kW	
fastPACK 1 IGBT5 H5/Rapid1S L58x 10-xY074PA100SM-L583Fxx up to 30 kW up to 30 kW </td <td></td>	

Ongoing R&D Project

Тојесс

rioduce concept

Serial Status

DC Charger Product Roadmap Product Concept *fast*PACK 0 and *fast*PACK 1

Features

Housina

- I Latest generation 1200V IGBT7-H7 (TRENCHSTOP[™] High Speed Chip) and EMCON 7 Rapid Diode
 - I Low saturation voltage, VCEsat

Main chip technology

- I Low forward voltage (VF)
- / Soft, fast switching
- I Optional with DC link caps and open emitter configuration
- Potential applications: Charging, Welding, UPS, String Inverter

flow 0	1200V IGBT7 H7	1xIGC25T120X12Q (40A) 1xIDC14D120X8Q (40A)	10-PC124PA040H7
flow 1	1200V IGBT7 H7	2xIGC25T120X12Q (80A) 2xIDC14D120X8Q (80A)	10-PY124PA080H7
Can be of (1200V/1	fered also as Half-bridg 60A)	ge, flowDUAL 0 (1200)	//80A) and flowDUAL 1

Prel. BOM

Part Number

*Assuming a typical charging operation point LLC: Vdc 800V, Vout 400V, fsw 100kHz, Ths 80°C

DC Charger Product Roadmap

Voltage	Product Line	Technology SiC Insdie	Product Family	Part Number	R _{oSon} [mOhm]							1	Application Power		202	:3		20)24			202	25			
					5	11	16 1	7 18	20	28 3	2 35	45	52 7	75	Tating.	Q1	Q2	Q3 Q	4 Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4
	fastPACK 0 SiC	SiC MOSFET Gen3	L62x	10-PZ124PA075ME03-L627F28Y 10-PZ124PA032ME03-L629F98Y										u u	p to 8 kW p to 20 kW											
		SiC MOSFET Gen4	L62x	10-PZ124PA062MR-L628F18Y 10-PZ124PA036MR-L629F18Y										u u	p to 10 kW p to 20 kW											
1200V	fastPACK E1 SiC	SiC MOSFET Gen3	LQ1x	10-EZ124PA032ME-LQ17F18T 10-EZ124PA016ME-LQ18F18T										u u	p to 20 kW p to 30 kW											
		SiC MOSFET Gen4	LR0x	10-EZ124PA018MR-LR09F08T										u	p to 30 kW											
	fastPACK 1 SiC	SiC MOSFET Gen3	L58x	10-PY124PA011ME										u	p to 60 kW											
	fastPACK E2 SiC	SiC MOSFET Gen3	LP4x	10-EY124PA016ME-LP49F18T 10-EY124PA011ME-LP40F18T										u	p to 45 kW p to 60 kW											
900V	fastPACK 0 SiC	SiC MOSFET Gen3	L62x	10-PC094PB035ME02-L629Fx6Y 10-xx094PB017ME02-L620F3xx										u	p to 25 kW											
	fastPACK 0 SiC	SiC MOSFET Gen3	L62x	10-PZ074PA045ME 10-PZ074PA023ME 10-PZ074PA023ME 10-PZ074PA015ME										u u u	p to 10 kW p to 15 kW p to 20 kW											
		SiC MOSFET Gen4	L62x	10-PZ084PA045MR 10-PZ084PA023MR 10-PZ084PA015MR										u u u	p to 10 kW p to 15 kW p to 20 kW											
6501/	fastPACK 0	Si MOSFET CFD7	L62x	10-PZ064PA073F7 10-PZ064PA045F7 10-PZ064PA028F7										u u u	ip to 8 kW ip to 12 kW ip to 15 kW											
0504	fastPACK E1 SiC	SiC MOSFET Gen3	LQ1x	10-E1074PA023ME01-LQ12F68Z 10-E1074PA015ME01-LQ13F68Z										u u	p to 15 kW p to 20 kW											
	fastPACK 1 SiC	SiC MOSFET Gen3	L58x	10-PY074PA011ME										u	p to 30 kW											
		SiC MOSFET Gen4	L58x	10-PY084PA011MR										u	p to 30 kW											
	fastPACK 1	Si MOSFET CFD7	L58x	10-PY064PA018F7 10-PY064PA009F7										u	p to 25 kW p to 35 kW											
	fastPACK E2 SiC	SiC MOSFET Gen4	PB3x	10-EY084PA023MR01-PB32F46T										u	p to 15 kW											

V

DC Charger Product Roadmap Product Concept *fast*PACK 1 SiC

Features

Housing

flow 1

flow 1

- Latest generation SiC MOSFET
- / Optimized layout/pinout
 - / Multi coupled DC-link input for each half-bridge
 - / Symmetrical power loops for each components

Main chip technology

- / Very low stray inductance
- / Optional with DC link caps
- I Potential applications: Charging, Welding, UPS, String Inverters

H-Bridge Schematic

Part Number

10-FY124PB007ME

10-FY124PB010MS

New flow 1 layout/pinout and PCB routing

Can be offered also as Half-bridge

Housing	Main chip technology	Prel. BOM	Part Number
flow 1	1200V SiC MOSFET gen4	8xCPM4-0120-0149JS0A	10-FY122PA004ME
flow 1	1200V SiC MOSFET gen2	8xWF0040N-1200_G2	10-FY124PB005MS

Prel. BOM

Vincotech

				AC/DC DC Link Isolated	DC/D			→ →		0_		=	2	2	×	ليها												
			Product						I _{Cr}	nom [A	1					Application		2	023			2	024		T	2	2025	;
voltage	Product Line	Technology	Family	Part Number	10	18	20	30 4	40 6	0 70	80	0 100	1	20 10	50	Power rating*	Q1	Q2	Q3	Q4	Q1	Q2	Q3	3 Q4	4 (21 Q	2 Q	3 Q4
1700V	fastPACK E1 SiC	SIC SBD	LS0x	10-EZ174RA018RO-LS07J83T												up to 13 kW												
	fastPACK 0 SiC	SIC SBD	LH0x	10-PZ12ORA100RO-LH00J88Y												up to 30 kW												
	fastPACK 1	Fast Diode	LH0x	10-PY120RA060VH-LJ92I08Y 10-PY120RA060VH01-LJ92I03Y 10-PY120RA100CA-LJ95I03Y 10-PY120RA120VH-LJ96I03Y												up to 35 kW												
1200V	fastPACK 1 SiC	SIC SBD	∐5x	10-PG120RA060CD-LJ58I18T 10-PG120RA080CD-LJ59I18T 10-PG120RA100RO-LJ50I48T 10-PG120RA100CD-LJ50I18T	\square											up to 50 kW up to 60 kW												
	fastPACK E1 SiC	SIC SBD	LS0x	10-EZ124RA010RO-LS06J88T 10-EZ124RA030RO-LS08J88T												up to 25 kW												
	fastPACK E2 SiC	SIC SBD	LP4x	10-EY124RA080CD												up to 50 kW									T			
	flowCON E2 SiC	SIC SBD	PJ1x	10-EY126RA040CD-PJ17J98T												up to 25 kW												
	fastPACK S3 SiC	SBD	LM9x	B0-SP12ORA080RO-LM90J48T												up to 50 kW												
	TASLPACK U SIC	SIC SBD	LH0x	10-PZ07O2A020RO-LH01J88Y												up to 15 kW												
650V	fastPACK 1 SiC	SIC SBD	L)5x	10- PG07ORA060RO 10- PG07ORA080RO 10- PG07ORA100RO- LJ51I48T												up to 60 kW												
	fastPACK 1	Fast Diode	LJ5x	10-PG07ORA160RF-LJ53I88T	1											up to 50 kW												
	flowCON 1	Fast Diode	L82x	10-FY076RA070VH-L824J58												up to 25 kW												

DC Charger

- Latest generation SiC SBD for high switching and high efficiency
- Ready for 400 V and 800 V battery systems
- Optional w/ or w/o discharge switch

Vincotech

*Assuming a typical charging operation point LLC: Vdc 800V, Vout 400V, fsw 100kHz, Ths 80°C

New flowCON 1 and flowCON E2 SiC

/ Ultra-efficient **3-phase output** rectifier power module

/ Enables compact, light, and costeffective designs with better loss distribution and less stress on passive and active devices

/ Multi-sourced, latest-generation 650 V and 1200 V Si fast-recovery and SiC diodes

VIN DC Charger Product Solutions

DC Charger Product Roadmap for compact designs

SFET SC MOSFET -SI MOSFET -

Single-phase rectifier+PFC boost+H-Bridge for isolated DC-DC power conversion: 3-in-1 module for highly **compact PCB designs**

- Rectifier: high efficiency low voltage drop diodes
- PFC:2 legs 650V IGBT H5 + ultrafast diodes or latest 600V P7 CoolMOS chip technology and SiC SBD for high-frequency and high-efficiency switching
- H-Bridge: 650V IGBT H5 or latest CFD7 CoolMOS chip technology for high-frequency and high-efficiency switching

Outlook

 650V SiC MOSFET Tech is outperforming SJ MOSFET in terms of performance and costs

SUMOSEET SC MOSEET SUMOSEET SC MOSEE

VIN DC Charger Product Solutions

DC Charger Product Roadmap for MCS

DC Charger Product Roadmap for MCS

Preliminary system architecture for MW Charger

DC Charger Product Roadmap for MCS AC/DC unit – *flow*ANPC 1 with SiC MOSFETs

Features

- Optimized for 1500 Vdc application up to 200 kW
- / ANPC with inner switch modulation
- / SiC MOSFETs for inner switch
- Easy split into low- & high-speed modules (optimal power loss distribution between LS and HS parts at ~40 kHz)
- / Cost/performance optimized Si/SiC hybrid chipset
- I Low inductive flow 1 packages with Al₂O₃ DCB
- I Pin positions optimized for easy module arrangement and PCB layout
- I For advanced heat sink with heat pipes

Power Class	Housing	Current rating	Main chip technology	Part number						
200 644	flow 1	~5-6 mΩ	1200 V SiC MOS	tbd.						
200 KW	flow 1	140 A	1200 V Si IGBT M7	tbd.						
Concepts										

DC Charger Product Roadmap for MCS AC/DC unit – *flow*MNPC E3 with SiC MOSFETs

/ Features

- Optimized for 1500 Vdc application up to 250 kW
- / Three-level MNPC topology
- / Full SiC technology using 2kx SiC MOSFETs in buck switch
- I Low inductive flow E3 with Al₂O₃ DCB
- I Pin positions optimized for easy module arrangement and PCB layout

Power Class	Housing	Current rating	Main chip technology	Part number						
250 kW	flow E3	~4 mΩ	1200 V SiC MOS	tbd.						
			Concepts							

DC Charger Product Roadmap for MCS DC/DC unit – *fast*PACK S3 with SiC MOSFETs

Features

Page 53

Optimized for 1500 Vdc application using 2x00V SiC MOSFETs

(optionally 1.7 kV SiC MOSFETs)

- *Operation in resonant mode at fixed output voltage and the use of a secondary DC/DC stage lead to higher system efficiency at lower battery voltagies
- / Low inductive flow S3, or flow E3 packages with Al_2O_3 DCB
- I Pin positions optimized for easy module arrangement and PCB layout

Power Class	Housing	Current rating	Main chip technology	Part number
~75 kW	flow S3/E3	~10 mΩ	1700 V SiC MOS	tbd.
~75 kW	flow S3/E3	~8 mΩ	2x00 V SiC MOS	tbd.
			Concepts	

VIN DC Charger Product Solutions

DC Charger VIN reference designs

DC Charger VIN reference designs 22kW full-SiC bi-directional DC Charger Design Proposal

Vincotech

DC Charger VIN reference designs 22kW full-SiC DC Charger Design Proposal

DC Charger VIN reference designs

30kW DC Charger Design Proposal with New PFC Concept Proposal for DC Charger

- / New Current Synthesizing PFC (CSPFC) topology for highest efficiency at lowest total system costs through
 - Reduced number of SiC devices
 - > Reduced number and size of the PFC inductors
- / Latest SiC-MOSFET chip technology for high speed switching and high efficiency up to 100 kHz and >99% respectively
- / Bi-directional ready
- / Thin Al₂O₃ substrate eases the system's thermal design
- / Temperature sensor

DC Charger VIN reference designs

30kW DC Charger Design Proposal with New PFC Concept Proposal for DC Charger

DC Charger VIN reference designs 60kW Uni-directional DC Charger Design Proposals

Information is Vincotech confidential and proprietary. Do not reproduce nor distribute.

Vincotech

DC Charger VIN reference designs 60kW bi-directional DC Charger Design Proposals

Vincotech

EMPOWERING YOUR IDEAS