

IFX Gen2 SiC MOS increases EV Charger performance compared with Gen1 SiC MOS.

KM LEE

The CoolSiC generation-2 (Gen2) Introduction (Page 3-13)

Striving for excellence in SiC MOSFETs

Building on the strenghts of Generation 1 to enable the accelerated design of more cost optimizated, efficient, compact, and reliabile systems

-(≣)

- CoolSiC™ Generation 1
 - Established the benchmark in efficient power conversion
 - Solved the gate oxide reliability risk in SiC MOSFETs using a trench gate
 - Overcame common SiC MOSFET limitations in control and drive
 - Made all industry-standard packages

available

Reliable performance

CoolSiC™ Generation 2

•

- Enabling higher system performance per \$
- Maintaining Gen1 high reliability
- Adding robustness and ease of use features for the highest design flexibility
- Advancing the packaging technology for more output capability

CoolSiC gen2 shows the best FOMs to reach the highest performance and power density (25 °C comparison)

FoMs of competitor parts based on publicly available datasheets, 25°C, reference products:

Qoss X Ron.typ @ 25°C

Lower Eoss → Reduced switching losses in hard switched topologies. Better efficiency by lower magnetizing current possible Best light-load efficiency More energy efficiency

and power density

Qq X Ron.typ @ 25 °C

Lower Qrr → Enabler for hard switched half bridge topologies (e.g. CCM Totem Pole PFC)

Enables energy efficient designs

CoolSiC[™] gen2 shows the best FOMs to reach the highest performance and power density (125 °C comparison)

FoMs of competitor parts based on publicly available datasheets, 125°C, reference products:

Qoss X Ron,typ @ 125°C

Lower Qoss → lower dead time, reduced circulating current in resonant topologies and less losses at high frequency. Enabler for HF ZVS topologies (e. g. > 250 kHz) like LLC.

Higher switching frequency, power density

Lower Eoss → Reduced switching losses in hard switched topologies. better efficiency by lower magnetizing current possible Best light-load efficiency

More energy efficiency and power density

Lower Qg → reduced losses light load efficiency in HF resonant topologies. Enables usage of gate drivers with lower current capability for same switching speed

Faster switching, more energy efficiency

Copyright © Infineon Technologies AG 2024. All rights reserved.

CoolSiC™ gen2 performance compared to gen1

Qoss X Ron,typ @ 25°C

G1 G2

- Reduced Q_{oss} results in reduced current required for full ZVS.
- Reduced transition time for a given current.

Enabler for HF ZVS topologies (e. g. > 250 kHz)

Reduced Q_{fr} reduces switching losses and enables cycle by cycle hard commutation of body diode in totem pole like topologies.

Enabler for hard switched half bridge topologies (e. g. CCM Totem Pole PFC)

CoolSiC[™] gen2 boasts the lowest RDSon in SMD packages and the narrowest distribution

 CoolSiC[™] G2 boasts the lowest Rdson in a standard SMD package (both in 650V and 1200V)

It shows also the narrowest Rdson distribution

⁶⁵⁰V Ron.max / Ron,typ distribution¹

1) 650V and 1200V SiC MOSFET landscape as per Dec 2023. The 25°C values are reported

650V D2PAK-7 BiC market product comparison¹

1200V D2PAK-7 BiC market product comparison¹

Low switches energies lead to lower power losses

Etot*Rontyp [nCΩ] @ 25 °C

Lower Etot value enables lower power losses per installed Watt of system power

Test Condition

Infineon, IMBG65R040M2H (Vds=400, Id=22.9A, Rg=3.3 Ohms, Vgs = -5 - 18V) Competitor A (Vds=400, Id=22.9A, Rg=3.3 Ohms, Vgs = -5 - 18V) Competitor B (Vds=500, Id=20.0A, Rg=3.3 Ohms, Vgs = -4 - 18V) Competitor C (Vds=400, Id=20.0A, Rg=3.3 Ohms, Vgs = -5 - 18V) Competitor D (Vds=400, Id=20.0A, Rg=3.3 Ohms, Vgs = -4 - 18V)

Measurements in Infineon labs, with Datasheets

Etot*Ronmax [nCΩ] @ 25 °C

Best immunity against unwanted turn-on effects

- Parasitic (re)turn on (PTO) happens when the induced voltage on the gate is higher than the Vth – threshold voltage
- PTO may increase the turn-on losses

- The lower is the PTO factor, the less likely is to have parasitic turn on → higher efficiency and safer implementation of unipolar drive
- Both 1200V and 650V show excellent immunity against PTO. Below is reported, as example, a 650V / 750V PTO SiC MOSFET factor comparison

Why 0V turn off voltage is possible with negligible parasitic turn-on effects?

Datasheet comparison of 650V SiC MOSFET devices having a nominal on-state resistance of 60-80 m Ω.

Best for reducing the parasitic turn-on:

- higher Vgs_(th) more margin against induced Vgs. The lower is the Vgs_(th) the higher is the probability to have a return-on
- Lower capacitances ratio Cgd/Cgs The lower is this ratio and the lower is the induced Vgs
 Putting the 2 results together, Infineon has the best immunity against overall parasitic turn-on

Flexible driving voltage

0V turn off voltage enables a more simplified and cheaper driving scheme

18V turn on is the most optimized choice for performance, reliability and compatibility

- Rdson increases at 15V (by 17% @ 125°C)
- This behavior is the same for all SiC MOSFET brands
- FIT rates are very low also at 20V

**1 FIT = 1 failure expected per 10⁹ device hours of operation (e.g.1M pieces over 1000 operating hours)

CoolSiC Trench MOSFET: FoM comparison: Gen 1 vs Gen 2

Parameter	IMZA65R057M1H 57 mΩ,typ Gen1	IMZA65R057M2H 57 mΩ,typ Gen2	Comparison (Gen2 vs Gen1)
Q _{oss @ 400 V}	65	46	~-30%
E _{oss @ 400 V}	9.8 Reduced	switching 6.5	~-35%
C _{iss @ 400 V}	930	ses 695	~-25%
C _{rss @ 400 V}	11	6	~-45%
(C _{rss} /C _{iss}) _{@ 400 V}	0.012 Reduced to P	sensitivity TO*	~-30%
V _{(GS)th}	Same target V _{(GS)th} ~4.5V @ 25°C		~0%

> Gen1: datasheet values.

> Gen2: characterization data based on EES with not final process

> * parasitic return-on

CoolSiC[™] is the most balanced technology combining ease of use, switching efficiency and superior thermal performances

Gen1 vs Gen2 Efficiency Comparison in EV Charger's DCDC topology... (Page 15-28)

07.2024

EV charging is a key strategic application for Infineon We cover the full ecosystem from AC to high power DC charging

The focus use-case of our 22 kW reference design is a **bi-directional DC Wallbox**

Infineon targets the complete EV charging ecosystem from AC to high-power DC

3 Level NPC2 and 2 Level 3phase are the most common PFC topologies for bi-directional DC EV Charging

Most common PFC topologies for EV Charging

CLLC and Dual Active Bridge are the most common DC-DC power conversion topologies for bi-directional DC EV Charging

Most common DC-DC power conversion topologies for EV charging

Comparison of full bridge CLLC and full bridge / 3-phase DAB: Hardware design

Full bridge CLLC

 $L_{rs}=\!L_{rp}/n^2,\,C_{rs}=C_{rp}\cdot n^2$

Full bridge DAB

SPS control:

3-phase DAB (Y-connected)

 $L_{pa} = L_{pb} = L_{pc}$

SPS control:

Full bridge CLLC ZVS (Zero Voltage Switching) region

Full bridge CLLC

PFM control for CLLC, aims to control the voltage gain

When $f_s > f_{sp}$, both the monopoly of voltage gain and ZVS of primary MOSFET can be achieved

CLLC Waveform

- EMI design: easy
- Flat efficiency curve
- Easy ZVS

DAB Hard switching region

Fundamental challenge: DAB looses ZVS soft switching, according to ZVS boundary. Light load is worst for ZVS

Turn-on current of Q1	43.3A	26.1A
RMS current of Q1	17.9A	20.7A
Losses of Q1	116W	76.4W

- Light load is the worst condition when $Vin \neq n \cdot Vo$
- MOSFET can not endure the high loss at light load

Gen 2 will be best which has low switching loss to cover the wide load

Control concept for DAB and 3-phase DAB: New approach for control algorithm design

Solution: adopt more control freedom based on a reasonable optimization objective, for example minimizing the turn-on current

For full-bridge DAB

Control method	Control freedom	Degrees of contro I freedom	
SPS	D0	1	
DPS	D0, only D1or D2	2	
EPS	D0, D1=D2	2	

For 3-phase DAB

An intrinsic phase shift (D1/D2, 120°) already exists in 3-phase DAB

Control method	Control freedom	Degrees of contro I freedom	Applicable c ondition
IFX method #1	D0, D3=D4, symmetric PWM	2	Vin>n*Vo
IFX method #2	D0, D3=D4, complementary PWM	2	Vin <n*vo< td=""></n*vo<>

New approach : 2 control freedom + software simplicity

Control concept of DAB with Gen1 vs Gen2 SiC Efficiency Comparison

Control concept for 3-phase DAB: Implementation and results of new control algorithm

07.2024

Copyright © Infineon Technologies AG 2024. All rights reserved.

24

160

150

140

120

110

80

60

40

30

20

Gen

Gen₂

Output Power (in Watts)

1000

nfineon

Summary of CLLC and full bridge / 3-phase DAB:

Top level assessment

Main conclusions:

- 1. CLLC is the best choice, if high switching frequency, high power density and good EMI performance need to come together, and a narrow output voltage range is acceptable.
- 2. The key advantage of DAB for the use case of DC EV charging is its combination of wide output voltage range with a decent efficiency in both directions, and lower cost.
- 3. 3-phase DAB comes with the lowest semiconductor and passive component costs, but needs special care on the control concept

Full-bridge CLLC versus full-bridge DAB

Full-bridge DAB versus 3-phase DAB

PFC Topology comparison and hard switching

Infineon

Copyright © Infineon Technologies AG 2024. All rights reserved.

Actual Switching waveform

Gen1 and Gen2

Actual switching waveform Comparision

