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IFX Gen2 SiC MOS increases EV Charger 

performance compared with Gen1 SiC MOS.
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The CoolSiC generation-2 (Gen2) 

Introduction 

(Page 3-13)
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Striving for excellence in SiC MOSFETs
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CoolSiC gen2 shows the best FOMs to reach the

highest performance and power density (25 °C comparison)
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CoolSiC  gen2 shows the best FOMs to reach the

highest performance and power density (125 °C comparison)

Diode Current comparision
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CoolSiC  gen2 performance compared to gen1
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CoolSiC  gen2 boasts the lowest RDSon in SMD packages

and the narrowest distribution
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Low switches energies lead to lower power losses

Test Condition 

Infineon, IMBG65R040M2H (Vds=400, Id=22.9A, Rg=3.3 Ohms, Vgs = -5 – 18V)

Competitor A (Vds=400, Id=22.9A, Rg=3.3 Ohms, Vgs = -5 – 18V)

Competitor B (Vds=500, Id=20.0A, Rg=3.3 Ohms, Vgs = -4 – 18V)

Competitor C (Vds=400, Id=20.0A, Rg=3.3 Ohms, Vgs = -5 – 18V)

Competitor D (Vds=400, Id=20.0A, Rg=3.3 Ohms, Vgs = -4 – 18V)

Measurements in Infineon labs, with Datasheets
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Best immunity against unwanted turn-on effects
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Why 0V turn off voltage is possible with negligible parasitic

turn-on effects?

Competitor A

Competitor B Competitor C

Competitor D

Competitor E



11Copyright ©  Infineon Technologies AG 2024. All rights reserved.07.2024

Flexible driving voltage
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CoolSiC Trench MOSFET:

FoM comparison: Gen 1 vs Gen 2
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CoolSiC  is the most balanced technology combining ease

of use, switching efficiency and superior thermal performances
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Gen1 vs Gen2 Efficiency Comparison in 

EV Charger’s DCDC topology…

(Page 15-28)
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SiC power semiconductors are the perfect answer to many of

 today's and tomorrow’s DC EV charging requirements and trends

Reduced system size

Lower system cost

Most efficient power conversion
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EV charging is a key strategic application for Infineon

We cover the full ecosystem from AC to high power DC charging

Connectivity & Control Automotive systems High power industrial systems

Wirless Charging DC High Power 

Charging

Infineon targets the complete EV charging ecosystem from AC to high-power DC

The focus use-case of our 

22 kW reference design is a

bi-directional DC Wallbox
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3 Level NPC2 and 2 Level 3phase are the most common 

PFC topologies for bi-directional DC EV Charging

EMI 

filter

DC 

linkAC-DC
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AC-DC
Secondary side

Galvanic 

isolationDC-AC
Primary side

DC 

filter

Vienna rectifier
(uni-directional)

3L NPC2

(bi-directional)

Most common PFC topologies for EV Charging

Diode rectifier
2L 3phase

(bi-directional)

2L 3phase
(bi-directional)
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CLLC and Dual Active Bridge are the most common DC-DC power 

conversion topologies for bi-directional DC EV Charging

Most common DC-DC power conversion topologies for EV charging
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Comparison of full bridge CLLC and full bridge / 3-phase DAB:

Hardware design  

𝐿𝑟𝑠  =𝐿𝑟𝑝/𝑛2, 𝐶𝑟𝑠 = 𝐶𝑟𝑝 ∙ 𝑛2
𝐿𝑝 =

𝑛𝑉𝑏𝑢𝑠𝑉ℎ𝑣𝐷(1 − 𝐷)

2𝑓𝑠𝑃𝑜
𝐿𝑝𝑎=𝐿𝑝𝑏=𝐿𝑝𝑐

Full bridge CLLC Full bridge DAB 3-phase DAB (Y-connected)

Q1/Q2

i_Lrp

id_Q1

Q1/Q5 Q1/Q7

i_Lp i_Lpa

id_Q1 id_Q1

PFM control: SPS control: SPS control: 
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Full bridge CLLC ZVS (Zero Voltage Switching) region

PFM control for CLLC, aims to control the voltage gain

When fs > fsp, both the monopoly of voltage gain and ZVS of primary 

MOSFET can be achieved

fsp

Inductive area (ZVS)

Full bridge CLLC 

Capacitive

area (hard 

switching on)

Peak gain

Q1/Q2

i_Lrp

id_Q1

PFM control: 

CLLC Waveform

‒ EMI design: easy

‒ Flat efficiency curve

‒ Easy ZVS

When turn on, ZVS (O)

When turn off, ZVS (X)
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DAB Hard switching region

Fundamental challenge: DAB looses ZVS soft switching, according to ZVS boundary. Light load is worst for ZVS

SPS

Q1

ip

Id_Q1

‒ Light load is the worst condition when  𝑽𝒊𝒏≠n∙𝑽𝒐

‒ MOSFET can not endure the high loss at light load

Output voltage: 1000 V

Output load 0.5kW 15kW

Turn-on current of Q1 43.3A 26.1A

RMS current of Q1 17.9A 20.7A

Losses of Q1 116W 76.4W

Q1

ip

Id_Q1

Hard switching in light load Soft switching in ZVS boundary

Gen 2 will be best which has low switching loss to cover the wide load

No ZVS
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Control concept for DAB and 3-phase DAB:

New approach for control algorithm design

Solution: adopt more control freedom based on a reasonable optimization objective, for example minimizing the turn-on current

D0

D1 D2

D0

D3 D4

D1 D2

For full-bridge DAB For 3-phase DAB 

An intrinsic phase shift (D1/D2, 120°) already exists in 3-phase DAB

New approach : 2 control freedom + software simplicity

Control method Control freedom
Degrees of contro

l freedom

SPS D0 1

DPS D0, only D1or D2 2

EPS D0, D1=D2 2

Control method Control freedom
Degrees of contro

l freedom
Applicable c

ondition

IFX method #1
D0, D3=D4,

symmetric PWM
2 Vin>n*Vo

IFX method #2
D0, D3=D4, 

complementary PWM
2 Vin<n*Vo
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Control concept of DAB with Gen1 vs Gen2 SiC 

Efficiency Comparison

Vpri, Vsec

i_Lp

id_Q1

DAB 

SPS 

control

DAB 

DPS 

control

SPS control: 

Vpri, Vsec

i_Lp

id_Q1

DPS control: 

Gen1 : IMBG120R45M1H / Gen2 : IMBG120R40M2H

Gen1 : IMBG120R45M1H / Gen2 : IMBG120R40M2H

Gen2

Gen1

Gen1

Gen2

Gen2

Gen1

Gen1

Gen2

Total loss reduced in Gen2 with Efficiency up
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Control concept for 3-phase DAB:

Implementation and results of new control algorithm

Q1/Q2

Q7/Q8

Q1/Q2

Q7/Q8

Modulation scheme 1: SPS + symmetric PWM

 (D0, D3=D4, when Vbus> n * Vhv) 

Modulation scheme 2: SPS + complementary PWM 

(D0, D3=D4, when Vbus < n * Vhv) 

Result: turn-on current of Q7 is reduced from 45.2 A to -3.1 A

at Vbus = 680 V, Vhv = 200 V, load = 2 kW
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at Vbus = 900 V, Vhv = 900 V, load = 1 kW

Result: turn-on current of Q1 is reduced from 24.7 A to 7.2 A

3-Phase DAB control

Vpri, Vsec

i_Lp

Gen2

Gen1

Gen1

Gen2
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Summary of CLLC and full bridge / 3-phase DAB:

ZVS capability

switching frequency

bi-directional
voltage gain range

ease of controlease of hardware

multi-phase
topology

easy EMI design

FB CLLC

FB DAB

high power density

high peak efficiency

low cost

high reliability

FB CLLC

FB DAB

3-phase DAB

low MOSFET
cost

low MOSFET
loss

high power
density

ease to meet
inductor…

low input and
output ripple

control
simplicity

FB DAB,
MOSFETs parallel

3-phase DAB

Top level assessment

Full-bridge CLLC versus full-bridge DAB Full-bridge DAB versus 3-phase DAB

Main conclusions:

1. CLLC is the best choice, if high switching frequency, high power 

density and good EMI performance need to come together, and a 

narrow output voltage range is acceptable.

2. The key advantage of DAB for the use case of DC EV charging is 

its combination of wide output voltage range with a decent 

efficiency in both directions, and lower cost.

3. 3-phase DAB comes with the lowest semiconductor and passive 

component costs, but needs special care on the control concept
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PFC Topology comparison and hard switching

ACDC

ACDC

ACDC

ACDC

▪ RG = 10 Ω, VDC = 800 V, ID = 20 A, T = 25°C

▪ Hard switching in PFC 

Hard switching in PFC topology, switching performance

Improvement is more important for system efficiency up

Gen1 vs Gen2

Eon Eoff comparison

In Hard Switching 
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Actual Switching waveform

Gen1 and Gen2

Actual switching waveform Comparision
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